Upload 2 files
Browse files- BertForPrefixMarking.py +220 -0
- config.json +3 -0
BertForPrefixMarking.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.utils import ModelOutput
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from typing import List, Tuple, Optional
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from transformers import BertPreTrainedModel, BertModel, BertTokenizerFast
|
7 |
+
|
8 |
+
# define the classes, and the possible prefixes for each class
|
9 |
+
POSSIBLE_PREFIX_CLASSES = [ ['לכש', 'כש', 'מש', 'בש', 'לש'], ['מ'], ['ש'], ['ה'], ['ו'], ['כ'], ['ל'], ['ב'] ]
|
10 |
+
# map each individual prefix to it's class number
|
11 |
+
PREFIXES_TO_CLASS = {w:i for i,l in enumerate(POSSIBLE_PREFIX_CLASSES) for w in l}
|
12 |
+
# keep a list of all the prefixes, sorted by length, so that we can decompose
|
13 |
+
# a given prefixes and figure out the classes
|
14 |
+
ALL_PREFIX_ITEMS = list(sorted(PREFIXES_TO_CLASS.keys(), key=len, reverse=True))
|
15 |
+
TOTAL_POSSIBLE_PREFIX_CLASSES = len(POSSIBLE_PREFIX_CLASSES)
|
16 |
+
|
17 |
+
def get_prefixes_from_str(s, greedy=False):
|
18 |
+
# keep trimming prefixes from the string
|
19 |
+
while len(s) > 0 and s[0] in PREFIXES_TO_CLASS:
|
20 |
+
# find the longest string to trim
|
21 |
+
next_pre = next((pre for pre in ALL_PREFIX_ITEMS if s.startswith(pre)), None)
|
22 |
+
if next_pre is None:
|
23 |
+
return
|
24 |
+
yield next_pre
|
25 |
+
# if the chosen prefix is more than one letter, there is always an option that the
|
26 |
+
# prefix is actually just the first letter of the prefix - so offer that up as a valid prefix
|
27 |
+
# as well. We will still jump to the length of the longer one, since if the next two/three
|
28 |
+
# letters are a prefix, they have to be the longest one
|
29 |
+
if not greedy and len(next_pre) > 1:
|
30 |
+
yield next_pre[0]
|
31 |
+
s = s[len(next_pre):]
|
32 |
+
|
33 |
+
def get_prefix_classes_from_str(s, greedy=False):
|
34 |
+
for pre in get_prefixes_from_str(s, greedy):
|
35 |
+
yield PREFIXES_TO_CLASS[pre]
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class PrefixesClassifiersOutput(ModelOutput):
|
39 |
+
logits: torch.FloatTensor = None
|
40 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
41 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
42 |
+
|
43 |
+
class BertForPrefixMarking(BertPreTrainedModel):
|
44 |
+
|
45 |
+
def __init__(self, config):
|
46 |
+
super().__init__(config)
|
47 |
+
|
48 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
49 |
+
self.dropout = nn.Dropout(0.1)
|
50 |
+
|
51 |
+
# an embedding table containing an embedding for each prefix class + 1 for NONE
|
52 |
+
# we will concatenate either the embedding/NONE for each class - and we want the concatenate
|
53 |
+
# size to be the hidden_size
|
54 |
+
prefix_class_embed = config.hidden_size // TOTAL_POSSIBLE_PREFIX_CLASSES
|
55 |
+
self.prefix_class_embeddings = nn.Embedding(TOTAL_POSSIBLE_PREFIX_CLASSES + 1, prefix_class_embed)
|
56 |
+
|
57 |
+
# one layer for transformation, apply an activation, then another N classifiers for each prefix class
|
58 |
+
self.transform = nn.Linear(config.hidden_size + prefix_class_embed * TOTAL_POSSIBLE_PREFIX_CLASSES, config.hidden_size)
|
59 |
+
self.activation = nn.Tanh()
|
60 |
+
self.classifiers = nn.ModuleList([nn.Linear(config.hidden_size, 2) for _ in range(TOTAL_POSSIBLE_PREFIX_CLASSES)])
|
61 |
+
|
62 |
+
# Initialize weights and apply final processing
|
63 |
+
self.post_init()
|
64 |
+
|
65 |
+
def forward(
|
66 |
+
self,
|
67 |
+
input_ids: Optional[torch.Tensor] = None,
|
68 |
+
attention_mask: Optional[torch.Tensor] = None,
|
69 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
70 |
+
prefix_class_id_options: Optional[torch.Tensor] = None,
|
71 |
+
position_ids: Optional[torch.Tensor] = None,
|
72 |
+
head_mask: Optional[torch.Tensor] = None,
|
73 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
74 |
+
output_attentions: Optional[bool] = None,
|
75 |
+
output_hidden_states: Optional[bool] = None,
|
76 |
+
return_dict: Optional[bool] = None,
|
77 |
+
):
|
78 |
+
r"""
|
79 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
80 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
81 |
+
"""
|
82 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
83 |
+
|
84 |
+
bert_outputs = self.bert(
|
85 |
+
input_ids,
|
86 |
+
attention_mask=attention_mask,
|
87 |
+
token_type_ids=token_type_ids,
|
88 |
+
position_ids=position_ids,
|
89 |
+
head_mask=head_mask,
|
90 |
+
inputs_embeds=inputs_embeds,
|
91 |
+
output_attentions=output_attentions,
|
92 |
+
output_hidden_states=output_hidden_states,
|
93 |
+
return_dict=return_dict,
|
94 |
+
)
|
95 |
+
|
96 |
+
sequence_output = bert_outputs[0]
|
97 |
+
sequence_output = self.dropout(sequence_output)
|
98 |
+
|
99 |
+
# encode the prefix_class_id_options
|
100 |
+
# If input_ids is batch x seq_len
|
101 |
+
# Then sequence_output is batch x seq_len x hidden_dim
|
102 |
+
# So prefix_class_id_options is batch x seq_len x TOTAL_POSSIBLE_PREFIX_CLASSES
|
103 |
+
# Looking up the embeddings should give us batch x seq_len x TOTAL_POSSIBLE_PREFIX_CLASSES x hidden_dim / N
|
104 |
+
possible_class_embed = self.prefix_class_embeddings(prefix_class_id_options)
|
105 |
+
# then flatten the final dimension - now we have batch x seq_len x hidden_dim_2
|
106 |
+
possible_class_embed = possible_class_embed.reshape(possible_class_embed.shape[:-2] + (-1,))
|
107 |
+
|
108 |
+
# concatenate the new class embed into the sequence output before the transform
|
109 |
+
pre_transform_output = torch.cat((sequence_output, possible_class_embed), dim=-1) # batch x seq_len x (hidden_dim + hidden_dim_2)
|
110 |
+
pre_logits_output = self.activation(self.transform(pre_transform_output))# batch x seq_len x hidden_dim
|
111 |
+
# run each of the classifiers on the transformed output
|
112 |
+
logits = torch.cat([cls(pre_logits_output).unsqueeze(-2) for cls in self.classifiers], dim=-2)
|
113 |
+
|
114 |
+
if not return_dict:
|
115 |
+
return (logits,) + bert_outputs[2:]
|
116 |
+
|
117 |
+
return PrefixesClassifiersOutput(
|
118 |
+
logits=logits,
|
119 |
+
hidden_states=bert_outputs.hidden_states,
|
120 |
+
attentions=bert_outputs.attentions,
|
121 |
+
)
|
122 |
+
|
123 |
+
def predict(self, sentences: List[str], tokenizer: BertTokenizerFast, padding='longest'):
|
124 |
+
# step 1: encode the sentences through using the tokenizer, and get the input tensors + prefix id tensors
|
125 |
+
inputs = encode_sentences_for_bert_for_prefix_marking(tokenizer, sentences, padding)
|
126 |
+
|
127 |
+
# run through bert
|
128 |
+
logits = self.forward(**inputs, return_dict=True).logits
|
129 |
+
|
130 |
+
# extract the predictions by argmaxing the final dimension (batch x sequence x prefixes x prediction)
|
131 |
+
logit_preds = torch.argmax(logits, axis=3)
|
132 |
+
|
133 |
+
ret = []
|
134 |
+
|
135 |
+
for sent_idx,sent_ids in enumerate(inputs['input_ids']):
|
136 |
+
tokens = tokenizer.convert_ids_to_tokens(sent_ids)
|
137 |
+
ret.append([])
|
138 |
+
for tok_idx,token in enumerate(tokens):
|
139 |
+
# If we've reached the pad token, then we are at the end
|
140 |
+
if token == tokenizer.pad_token: continue
|
141 |
+
if token.startswith('##'): continue
|
142 |
+
|
143 |
+
# combine the next tokens in? only if it's a breakup
|
144 |
+
next_tok_idx = tok_idx + 1
|
145 |
+
while next_tok_idx < len(tokens) and tokens[next_tok_idx].startswith('##'):
|
146 |
+
token += tokens[next_tok_idx][2:]
|
147 |
+
|
148 |
+
prefix_len = get_predicted_prefix_len_from_logits(token, logit_preds[sent_idx, tok_idx])
|
149 |
+
|
150 |
+
if not prefix_len:
|
151 |
+
ret[-1].append([token])
|
152 |
+
else:
|
153 |
+
ret[-1].append([token[:prefix_len], token[prefix_len:]])
|
154 |
+
|
155 |
+
return ret
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
def encode_sentences_for_bert_for_prefix_marking(tokenizer: BertTokenizerFast, sentences: List[str], padding='longest'):
|
160 |
+
inputs = tokenizer(sentences, padding=padding, return_tensors='pt')
|
161 |
+
|
162 |
+
# create our prefix_id_options array which will be like the input ids shape but with an addtional
|
163 |
+
# dimension containing for each prefix whether it can be for that word
|
164 |
+
prefix_id_options = torch.full(inputs['input_ids'].shape + (TOTAL_POSSIBLE_PREFIX_CLASSES,), TOTAL_POSSIBLE_PREFIX_CLASSES, dtype=torch.long)
|
165 |
+
|
166 |
+
# go through each token, and fill in the vector accordingly
|
167 |
+
for sent_idx, sent_ids in enumerate(inputs['input_ids']):
|
168 |
+
tokens = tokenizer.convert_ids_to_tokens(sent_ids)
|
169 |
+
for tok_idx, token in enumerate(tokens):
|
170 |
+
# if the first letter isn't a valid prefix letter, nothing to talk about
|
171 |
+
if len(token) < 2 or not token[0] in PREFIXES_TO_CLASS: continue
|
172 |
+
|
173 |
+
# combine the next tokens in? only if it's a breakup
|
174 |
+
next_tok_idx = tok_idx + 1
|
175 |
+
while next_tok_idx < len(tokens) and tokens[next_tok_idx].startswith('##'):
|
176 |
+
token += tokens[next_tok_idx][2:]
|
177 |
+
|
178 |
+
# find all the possible prefixes - and mark them as 0 (and in the possible mark it as it's value for embed lookup)
|
179 |
+
for pre_class in get_prefix_classes_from_str(token):
|
180 |
+
prefix_id_options[sent_idx, tok_idx, pre_class] = pre_class
|
181 |
+
|
182 |
+
inputs['prefix_class_id_options'] = prefix_id_options
|
183 |
+
return inputs
|
184 |
+
|
185 |
+
def get_predicted_prefix_len_from_logits(token, token_logits):
|
186 |
+
# Go through each possible prefix, and check if the prefix is yes - and if
|
187 |
+
# so increase the counter of the matched length, otherwise break out. That will solve cases
|
188 |
+
# of predicting prefix combinations that don't exist on the word.
|
189 |
+
# For example, if we have the word ושכשהלכתי and the model predict ו & כש, then we will only
|
190 |
+
# take the vuv because in order to get the כש we need the ש as well.
|
191 |
+
# Two extra items:
|
192 |
+
# 1] Don't allow the same prefix multiple times
|
193 |
+
# 2] Always check that the word starts with that prefix - otherwise it's bad
|
194 |
+
# (except for the case of multi-letter prefix, where we force the next to be last)
|
195 |
+
cur_len, skip_next, last_check, seen_prefixes = 0, False, False, set()
|
196 |
+
for prefix in get_prefixes_from_str(token):
|
197 |
+
# Are we skipping this prefix? This will be the case where we matched כש, don't allow ש
|
198 |
+
if skip_next:
|
199 |
+
skip_next = False
|
200 |
+
continue
|
201 |
+
# check for duplicate prefixes, we don't allow two of the same prefix
|
202 |
+
# if it predicted two of the same, then we will break out
|
203 |
+
if prefix in seen_prefixes: break
|
204 |
+
seen_prefixes.add(prefix)
|
205 |
+
|
206 |
+
# check if we predicted this prefix
|
207 |
+
if token_logits[PREFIXES_TO_CLASS[prefix]].item():
|
208 |
+
cur_len += len(prefix)
|
209 |
+
if last_check: break
|
210 |
+
skip_next = len(prefix) > 1
|
211 |
+
# Otherwise, we predicted no. If we didn't, then this is the end of the prefix
|
212 |
+
# and time to break out. *Except* if it's a multi letter prefix, then we allow
|
213 |
+
# just the next letter - e.g., if כש doesn't match, then we allow כ, but then we know
|
214 |
+
# the word continues with a ש, and if it's not כש, then it's not כ-ש- (invalid)
|
215 |
+
elif len(prefix) > 1:
|
216 |
+
last_check = True
|
217 |
+
else:
|
218 |
+
break
|
219 |
+
|
220 |
+
return cur_len
|
config.json
CHANGED
@@ -2,6 +2,9 @@
|
|
2 |
"architectures": [
|
3 |
"BertForMaskedLM"
|
4 |
],
|
|
|
|
|
|
|
5 |
"attention_probs_dropout_prob": 0.1,
|
6 |
"gradient_checkpointing": false,
|
7 |
"hidden_act": "gelu",
|
|
|
2 |
"architectures": [
|
3 |
"BertForMaskedLM"
|
4 |
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoModel": "BertForPrefixMarking.BertForPrefixMarking"
|
7 |
+
},
|
8 |
"attention_probs_dropout_prob": 0.1,
|
9 |
"gradient_checkpointing": false,
|
10 |
"hidden_act": "gelu",
|