Use ImageProcessor
Browse files
README.md
CHANGED
@@ -33,13 +33,13 @@ import torch
|
|
33 |
import numpy as np
|
34 |
from PIL import Image
|
35 |
|
36 |
-
from transformers import
|
37 |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
38 |
from diffusers.utils import load_image
|
39 |
|
40 |
|
41 |
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
|
42 |
-
|
43 |
controlnet = ControlNetModel.from_pretrained(
|
44 |
"diffusers/controlnet-depth-sdxl-1.0",
|
45 |
variant="fp16",
|
@@ -58,7 +58,7 @@ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
|
58 |
pipe.enable_model_cpu_offload()
|
59 |
|
60 |
def get_depth_map(image):
|
61 |
-
image =
|
62 |
with torch.no_grad(), torch.autocast("cuda"):
|
63 |
depth_map = depth_estimator(image).predicted_depth
|
64 |
|
|
|
33 |
import numpy as np
|
34 |
from PIL import Image
|
35 |
|
36 |
+
from transformers import DPTImageProcessor, DPTForDepthEstimation
|
37 |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
38 |
from diffusers.utils import load_image
|
39 |
|
40 |
|
41 |
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
|
42 |
+
processor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
|
43 |
controlnet = ControlNetModel.from_pretrained(
|
44 |
"diffusers/controlnet-depth-sdxl-1.0",
|
45 |
variant="fp16",
|
|
|
58 |
pipe.enable_model_cpu_offload()
|
59 |
|
60 |
def get_depth_map(image):
|
61 |
+
image = processor(images=image, return_tensors="pt").pixel_values.to("cuda")
|
62 |
with torch.no_grad(), torch.autocast("cuda"):
|
63 |
depth_map = depth_estimator(image).predicted_depth
|
64 |
|