dikdimon commited on
Commit
c1d553e
1 Parent(s): 00dd817

Upload scripts using SD-Hub extension

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. scripts/CFG Auto.py +368 -0
  2. scripts/CFG Schedule.py +369 -0
  3. scripts/ContorlNet_I2I_sequence_toyxyz_V2.py +367 -0
  4. scripts/LoopbackWave.py +348 -0
  5. scripts/Txt2img2img2img.py +291 -0
  6. scripts/UnsharpMask.py +54 -0
  7. scripts/__pycache__/CFG Auto.cpython-310.pyc +0 -0
  8. scripts/__pycache__/CFG Schedule.cpython-310.pyc +0 -0
  9. scripts/__pycache__/ContorlNet_I2I_sequence_toyxyz_V2.cpython-310.pyc +0 -0
  10. scripts/__pycache__/LoopbackWave.cpython-310.pyc +0 -0
  11. scripts/__pycache__/Txt2img2img2img.cpython-310.pyc +0 -0
  12. scripts/__pycache__/UnsharpMask.cpython-310.pyc +0 -0
  13. scripts/__pycache__/advanced_loopback.cpython-310.pyc +0 -0
  14. scripts/__pycache__/advanced_loopback_blend.cpython-310.pyc +0 -0
  15. scripts/__pycache__/advanced_seed_blending.cpython-310.pyc +0 -0
  16. scripts/__pycache__/alternate_sampler_noise_schedules.cpython-310.pyc +0 -0
  17. scripts/__pycache__/block_lora.cpython-310.pyc +0 -0
  18. scripts/__pycache__/cache_cleaner(from sd-webui-gradio-cleaner).cpython-310.pyc +0 -0
  19. scripts/__pycache__/custom_code-Copy1.cpython-310.pyc +0 -0
  20. scripts/__pycache__/custom_code.cpython-310.pyc +0 -0
  21. scripts/__pycache__/epiCFG_schedule_type.cpython-310.pyc +0 -0
  22. scripts/__pycache__/external_masking.cpython-310.pyc +0 -0
  23. scripts/__pycache__/img2imgalt-Copy1.cpython-310.pyc +0 -0
  24. scripts/__pycache__/img2imgalt.cpython-310.pyc +0 -0
  25. scripts/__pycache__/loopback-Copy1.cpython-310.pyc +0 -0
  26. scripts/__pycache__/loopback.cpython-310.pyc +0 -0
  27. scripts/__pycache__/loopback_for_chain.cpython-310.pyc +0 -0
  28. scripts/__pycache__/outpainting_mk_2-Copy1.cpython-310.pyc +0 -0
  29. scripts/__pycache__/outpainting_mk_2.cpython-310.pyc +0 -0
  30. scripts/__pycache__/poor_mans_outpainting-Copy1.cpython-310.pyc +0 -0
  31. scripts/__pycache__/poor_mans_outpainting.cpython-310.pyc +0 -0
  32. scripts/__pycache__/postprocessing_codeformer-Copy1.cpython-310.pyc +0 -0
  33. scripts/__pycache__/postprocessing_codeformer.cpython-310.pyc +0 -0
  34. scripts/__pycache__/postprocessing_gfpgan-Copy1.cpython-310.pyc +0 -0
  35. scripts/__pycache__/postprocessing_gfpgan.cpython-310.pyc +0 -0
  36. scripts/__pycache__/postprocessing_upscale-Copy1.cpython-310.pyc +0 -0
  37. scripts/__pycache__/postprocessing_upscale.cpython-310.pyc +0 -0
  38. scripts/__pycache__/process_png_metadata.cpython-310.pyc +0 -0
  39. scripts/__pycache__/prompt_matrix-Copy1.cpython-310.pyc +0 -0
  40. scripts/__pycache__/prompt_matrix.cpython-310.pyc +0 -0
  41. scripts/__pycache__/prompter.cpython-310.pyc +0 -0
  42. scripts/__pycache__/prompts_from_file-Copy1.cpython-310.pyc +0 -0
  43. scripts/__pycache__/prompts_from_file.cpython-310.pyc +0 -0
  44. scripts/__pycache__/prompts_from_file_2.cpython-310.pyc +0 -0
  45. scripts/__pycache__/quick_upscale.cpython-310.pyc +0 -0
  46. scripts/__pycache__/run_n_times.cpython-310.pyc +0 -0
  47. scripts/__pycache__/save-steps.cpython-310.pyc +0 -0
  48. scripts/__pycache__/sd_upscale-Copy1.cpython-310.pyc +0 -0
  49. scripts/__pycache__/sd_upscale.cpython-310.pyc +0 -0
  50. scripts/__pycache__/size_travel.cpython-310.pyc +0 -0
scripts/CFG Auto.py ADDED
@@ -0,0 +1,368 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #CFG Scheduler for Automatic1111 Stable Diffusion web-ui
2
+ #Author: https://github.com/guzuligo/
3
+ #Based on: https://github.com/tkalayci71/attenuate-cfg-scale
4
+ #Version: 1.81
5
+
6
+ from logging import PlaceHolder
7
+ import math
8
+ import os
9
+ import sys
10
+ import traceback
11
+ import copy
12
+ import numpy as np
13
+ import modules.scripts as scripts
14
+ import gradio as gr
15
+
16
+ #from modules.processing import Processed, process_images
17
+ from modules import images,processing
18
+ from modules.processing import process_images, Processed
19
+ from modules.processing import Processed
20
+ from modules.shared import opts, cmd_opts, state
21
+ class Script(scripts.Script):
22
+ def run(self,p,n0,dns,ns1,ns2,nr1,nr2 ,loops,nSingle):
23
+ return self.runBasic(p,n0,dns,ns1,ns2,nr1,nr2 ,loops,nSingle)
24
+
25
+ #def run(self,p,cfg,eta,dns ,loops,nSingle):
26
+ # return self.runAdvanced(p,cfg,eta,dns ,loops,nSingle)
27
+
28
+ def show(self, is_img2img):
29
+ self.isAdvanced=False
30
+ return True
31
+ def title(self):
32
+ return "CFG Scheduling" if (self.isAdvanced) else "CFG Auto"
33
+
34
+ def uiAdvanced(self, is_img2img):
35
+
36
+ placeholder="The steps on which to modify, in format step:value - example: 0:10 ; 10:15"
37
+ n0 = gr.Textbox(label="CFG",placeholder=placeholder)
38
+ placeholder="You can also use functions like: 0: math.fabs(-t) ; 1: (1-t/T) ; 2:=e ;3:t*d"
39
+ n1 = gr.Textbox(label="ETA",placeholder=placeholder)
40
+ #loops
41
+ #n2 = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=1)
42
+ n2 = gr.Slider(minimum=0, maximum=1, step=0.01, label='Target Denoising : Decay per Batch', value=0.5)
43
+ with gr.Row():
44
+ loops=gr.Number(value=1,precision=0,label="loops")
45
+ nSingle= gr.Checkbox(label="Loop returns one")
46
+
47
+ return [n0,n1,n2 ,loops,nSingle]
48
+ #uiBasic
49
+ def uiAuto(self, is_img2img):
50
+ self.autoOptions={"b1":"Blur First V1","b2":"Blur Last","f1":"Force at Start V1","f2":"Force Allover"}
51
+ with gr.Row():
52
+ dns = gr.Slider(minimum=0, maximum=1, step=0.01, label='Target Denoising : Decay per Batch', value=0.25)
53
+ n0=gr.Dropdown(list(self.autoOptions.values()),value=self.autoOptions["b1"],label="Scheduler")
54
+ with gr.Row():
55
+ n1 = gr.Slider(minimum=0, maximum=100, step=1, label='Main Strength', value=10)
56
+ n2 = gr.Slider(minimum=0, maximum=100, step=1, label='Sub- Strength', value=10)
57
+ with gr.Row():
58
+ n3 = gr.Slider(minimum=0, maximum=100, step=1, label='Main Range', value=10)
59
+ n4 = gr.Slider(minimum=0, maximum=100, step=1, label='Sub- Range', value=10)
60
+ with gr.Row():
61
+ loops=gr.Number(value=1,precision=0,label="loops")
62
+ nSingle= gr.Checkbox(label="Loop returns one")
63
+ return [n0,dns, n1,n2,n3,n4 ,loops,nSingle]
64
+
65
+ def ui(self, is_img2img):
66
+ return self.uiAdvanced(is_img2img) if (self.isAdvanced) else self.uiAuto(is_img2img)
67
+
68
+ def prepare(self,p,cfg,eta):
69
+ sampler_name=p.sampler_name
70
+ if not sampler_name:
71
+ print("Warning: sampler not specified. Using Euler a")
72
+ sampler_name="Euler a"
73
+ #if p.sampler_index in (0,1,2,7,8,10,14):
74
+ if sampler_name in ('Euler a','Euler','LMS','DPM++ 2M','DPM fast','LMS Karras','DPM++ 2M Karras'):
75
+ max_mul_count = p.steps * p.batch_size
76
+ steps_per_mul = p.batch_size
77
+ #elif p.sampler_index in (3,4,5,6,11,12,13):
78
+ elif sampler_name in ('Heun','DPM2','DPM2 a','DPM++ 2S a','DPM2 Karras','DPM2 a Karras','DPM++ 2S a Karras'):
79
+ max_mul_count = ((p.steps*2)-1) * p.batch_size
80
+ steps_per_mul = 2 * p.batch_size
81
+ #elif p.sampler_index==15: # ddim
82
+ elif sampler_name=='DDIM': # ddim
83
+ max_mul_count = fix_ddim_step_count(p.steps)
84
+ steps_per_mul = 1
85
+ #elif p.sampler_index==16: # plms
86
+ elif sampler_name=='PLMS': # plms
87
+ max_mul_count = fix_ddim_step_count(p.steps)+1
88
+ steps_per_mul = 1
89
+ else:
90
+ print("Not supported sampler", p.sampler_name, p.sampler_index)
91
+ return # 9=dpm adaptive
92
+
93
+
94
+
95
+ #print("it is:",n0t)
96
+ #for x in range(int(n)):
97
+ self.p=p
98
+ cfg=cfg.strip()
99
+ eta=eta.strip()
100
+ if cfg:
101
+ p.cfg_scale=Fake_float(p.cfg_scale,self.split(cfg,str(p.cfg_scale)) , max_mul_count, steps_per_mul)
102
+ #p.cfg_scale.p=p
103
+ if eta:
104
+ if (eta.find("@")==-1):
105
+ p.s_churn=p.eta =Fake_float(p.eta or 1,self.split(eta,str(p.eta)) , max_mul_count, steps_per_mul)
106
+ #print(p.s_noise)
107
+
108
+ #Fake_float(p.s_churn or 1,self.split(eta,str(p.s_churn)), max_mul_count, steps_per_mul)
109
+ else:
110
+ eta=eta.split("@")
111
+ if eta[0].strip()!="":
112
+ p.s_churn=Fake_float(p.s_churn or 1,self.split(eta[0],str(p.s_churn)), max_mul_count, steps_per_mul)
113
+ if len(eta)>1 and eta[1].strip()!="":
114
+ p.s_noise=Fake_float(p.s_noise or 1,self.split(eta[1],str(p.s_noise)), max_mul_count, steps_per_mul)
115
+ if len(eta)>2 and eta[2].strip()!="":
116
+ p.s_tmin=Fake_float(p.s_tmin or 1,self.split(eta[2],str(p.s_tmin)), max_mul_count, steps_per_mul)
117
+ if len(eta)>3 and eta[3].strip()!="":
118
+ p.s_tmax=Fake_float(p.s_tmax or 1,self.split(eta[2],str(p.s_tmax)), max_mul_count, steps_per_mul)
119
+
120
+
121
+ #p.cfg_scale.p=p
122
+ #
123
+
124
+
125
+
126
+ def runBasic(self,p,n0,dns,ns1,ns2,nr1,nr2 ,loops,nSingle):
127
+ if(n0==self.autoOptions["b1"]):
128
+ cfg=f"""0:{ns2}/2 if (t<T* (({nr1}/100)**2)) else cfg"""
129
+ eta=f"""0:{ns1}+1 if (t<T*(({nr1}/100)**2) ) else e*({nr2}/50)"""
130
+ elif(n0==self.autoOptions["f1"]):
131
+ cfg=f"""0:({ns1}*4)*((1-d**0.5)**1.5)/(t*(30-cfg)/30+1)/(l*2+1) if (t<T*{nr1}/100) else 0.1 if (t<T*({nr1}+{nr2}-{nr1}*{nr2})/100) else 7-d*7"""
132
+ eta=f"""0:0.8+{ns2}/25-min(t*0.1, 0.8+{ns2}/25 -0.01) if (t<T*{nr1}/100) else {ns2}/(10*(1+l*0.5)) if (t<T*({nr1}+{nr2}-{nr1}*{nr2})/100) else 1+e"""
133
+ elif(n0==self.autoOptions["b2"]):
134
+ cfg=f"""0:cfg if (e>{nr1}/100 or e<(1-({nr1}+{nr2}*(100-{nr1})/100)/100)) else {ns2}/10"""
135
+ eta=f"""0:e if (e>{nr1}/100 or e<(1-({nr1}+{nr2}*(100-{nr1})/100)/100)) else {ns1}/10"""
136
+ elif(n0==self.autoOptions["f2"]):
137
+ cfg=f"""= min(40,max(0,cfg+x(t)*({ns2}-50)/2 )) """
138
+ eta=f"""0:(1-(t%(2+ 10-.1*{nr1} ))/ (2+10-.1*{nr1}) )*{ns1}*.1 * (e*(100-{nr2})+{nr2})*.01 """
139
+ self.cfgsib={"Scheduler":n0,'Main Strength':ns1,'Sub- Strength':ns2,'Main Range':nr1,'Sub- Range':nr2}
140
+ return self.runAdvanced(p,cfg,eta,dns ,loops,nSingle)
141
+
142
+
143
+ def runAdvanced(self, p, cfg,eta,dns ,loops,nSingle):
144
+ self.initSeed=p.seed
145
+ #loops=p.batch_size
146
+ loops = loops if (loops>0) else 1
147
+
148
+ batch_count=p.n_iter
149
+ state.job_count = loops*p.n_iter
150
+ p.denoising_strength=p.denoising_strength or (1 if (self.isAdvanced) else 0.2)
151
+ initial_denoising_strength=p.denoising_strength
152
+ p.do_not_save_grid = True
153
+ if hasattr(p,"init_images"):
154
+ original_init_image = p.init_images
155
+ initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
156
+ else:
157
+ original_init_image=None
158
+
159
+ all_images = []
160
+ cfgsi=" loops:"+str(loops)+" terget denoising: "+str(dns)+"\nCFG: "+cfg+"\nETA: "+eta+"\n"
161
+
162
+ p.extra_generation_params = {
163
+ "CFG Scheduler Info":cfgsi,
164
+ }
165
+
166
+
167
+ #if basic, add basic info as well
168
+ if (self.isAdvanced==False):
169
+ self.cfgsib.update(p.extra_generation_params)
170
+ p.extra_generation_params=self.cfgsib
171
+
172
+ if loops>1:
173
+ processing.fix_seed(p)
174
+ #self.initDenoise=p.denoising_strength
175
+
176
+ for n in range(batch_count):
177
+ proc=None
178
+ history = []
179
+ p.denoising_strength=initial_denoising_strength
180
+ if (original_init_image!=None):
181
+ p.init_images=original_init_image
182
+ for loop in range(loops):
183
+ if opts.img2img_color_correction and original_init_image!=None:
184
+ p.color_corrections = initial_color_corrections
185
+
186
+ p.batch_size = 1
187
+ p.n_iter = 1
188
+ self.loop=loop
189
+ self.prepare(p, cfg,eta)
190
+ proc = process_images(p)
191
+ if loop==0:
192
+ self.initInfo=proc.info
193
+ self.initSeed=proc.seed
194
+ if len(proc.images)>0:
195
+ history.append(proc.images[0])
196
+ p.seed+=1
197
+ p.init_images=[proc.images[0]]
198
+ #p.denoising_strength=min(max(p.denoising_strength * dns, 0.05), 1)
199
+ p.denoising_strength=initial_denoising_strength+(dns-initial_denoising_strength)*(loop+1)/(loops)
200
+ else:#interrupted
201
+ break
202
+ #print("New denoising:"+str(p.denoising_strength)+"\n" )
203
+ all_images += history
204
+ if loops>0:#TODO:maybe this is not needed
205
+ p.seed=self.initSeed
206
+ #return proc if (loops==1 and p.batch_size==1) else Processed(p, all_images, self.initSeed, self.initInfo)
207
+ return proc if(nSingle) else Processed(p, all_images, self.initSeed, self.initInfo)
208
+
209
+
210
+
211
+
212
+
213
+
214
+
215
+ def peek(self,val):
216
+ print(val)
217
+ return val
218
+
219
+ def split(self,src,default='0'):
220
+ p=self.p
221
+ self.P=copy.copy({
222
+ 'cfg':float(str(p.cfg_scale)),
223
+ 'd':p.denoising_strength or 1,
224
+ 'l':self.loop,
225
+ 'min':min,
226
+ 'max':max,
227
+ 'abs':abs,
228
+ 'pow':pow,
229
+ 'pi':math.pi,
230
+ 'x':self._interpolate,
231
+ 'int':int,
232
+ 'floor':math.floor,
233
+ 'peek':self.peek,
234
+ })
235
+
236
+ if src[0:4]=="eval":
237
+ src="0:"+src[4:]
238
+ if src[0]=="=":
239
+ src="0:"+src[1:]
240
+
241
+ #clean up
242
+ while src[len(src)-1] in [";"," "]:
243
+ src=src[0:len(src)-1]
244
+ while src[0] in [";"," "]:
245
+ src=src[1:]
246
+
247
+ arr0 = src.split(';')##2
248
+
249
+ #resort array accounting for commas in indecies
250
+ arr=[]
251
+ for j in arr0:
252
+ #print(j)
253
+ v=j.split(":")
254
+ q=v[0].split(",")
255
+
256
+ for i in q:
257
+ arr.append(i+":"+v[1])
258
+
259
+
260
+
261
+
262
+ arr.sort(key=self._sort)
263
+ s=[]
264
+ val=default
265
+ for j in range(p.steps+1):
266
+ i=0
267
+ while i<len(arr) and i<=j:
268
+ v=arr[i].split(":")
269
+ #s=proc[j].n_iter
270
+ if math.floor(int(v[0]) if v[0].isnumeric() else float(v[0])*p.steps)==j:
271
+ val=v[1].strip()
272
+ break
273
+ i=i+1
274
+
275
+ #lets just evaluate all
276
+ if val[0]=="=":
277
+ val=val[1:]
278
+
279
+ _eta=1-j/p.steps
280
+ params={'t':j,'T':p.steps,'math':math,'p':p,'e':float(str(_eta))}
281
+
282
+ params.update(copy.copy(self.P))
283
+ #print(params)
284
+ s.append(float(eval(val,params)))
285
+ #end while loop
286
+ #else:
287
+ #s.append(float(val))
288
+ print(np.round(s,1),"\n")
289
+ return s
290
+ #limits a range of a value
291
+ def _interpolate(self,v,start=0,end=None,m=1):
292
+ end=end or self.p.steps
293
+ v=min(max(v,start),end)-start
294
+ return v*m/(end-start)+(1 if m<0 else 0)
295
+
296
+ def _sort(self,a):
297
+ _=a.split(":")[0]#splitter tester
298
+ return math.floor(int(_) if (_.isnumeric()) else float(_)*self.p.steps)
299
+
300
+ def evaluate (self,src):
301
+ s=[]
302
+ p=self.p
303
+ T=self.p.steps
304
+ for j in range(T+1):
305
+ _eta=1-j/p.steps
306
+ params={'t':j,'T':p.steps,'math':math,'p':p,'e':_eta}
307
+ params.update(self.P)
308
+ s.append(float(eval(src,params)))
309
+ return s
310
+
311
+ class Fake_float(float):
312
+ def __new__(self, value, arr, max_mul_count, steps_per_mul):
313
+ return float.__new__(self, value)
314
+
315
+ def __init__(self, value, arr, max_mul_count, steps_per_mul):
316
+ float.__init__(value)
317
+ self.arr = arr
318
+ self.curstep = 0
319
+ #self.p=p
320
+
321
+ #self.orig_value = orig_value
322
+ #self.target_value = target_value
323
+ self.max_mul_count = max_mul_count
324
+ self.current_mul = 0
325
+ self.steps_per_mul = steps_per_mul
326
+ self.current_step = 0 #fake
327
+ self.max_step_count = (max_mul_count // steps_per_mul) + (max_mul_count % steps_per_mul > 0)
328
+
329
+
330
+ def __mul__(self,other):
331
+ return self.fake_mul(other)
332
+
333
+ def __rmul__(self,other):
334
+ return self.fake_mul(other)
335
+
336
+ #def __add__(self,other):
337
+ #print("ADD!")
338
+ # return self.get_fake_value(other)+other
339
+ #def __sub__(self,other):
340
+ #print("SUB!")
341
+ # return self.get_fake_value(other)-other
342
+
343
+
344
+
345
+ def fake_mul(self,other):
346
+ #print("MUL!")
347
+ return self.get_fake_value(other) * other
348
+
349
+
350
+ def get_fake_value(self,other):
351
+ if (self.max_step_count==1):
352
+ fake_value = self.arr[0]
353
+ else:
354
+
355
+ fake_value = self.arr[self.curstep]
356
+ self.current_mul = (self.current_mul+1) % self.max_mul_count
357
+ self.curstep = (self.current_mul) // self.steps_per_mul
358
+ self.current_step+=1#FAKE STEP
359
+ return fake_value
360
+
361
+
362
+
363
+
364
+ def fix_ddim_step_count(steps):
365
+ valid_step = 999 / (1000 // steps)
366
+ if valid_step == int(valid_step): steps=int(valid_step)+1
367
+ if ((1000 % steps)!=0): steps +=1
368
+ return steps
scripts/CFG Schedule.py ADDED
@@ -0,0 +1,369 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #CFG Scheduler for Automatic1111 Stable Diffusion web-ui
2
+ #Author: https://github.com/guzuligo/
3
+ #Based on: https://github.com/tkalayci71/attenuate-cfg-scale
4
+ #Version: 1.81
5
+
6
+ from logging import PlaceHolder
7
+ import math
8
+ import os
9
+ import sys
10
+ import traceback
11
+ import copy
12
+ import numpy as np
13
+ import modules.scripts as scripts
14
+ import gradio as gr
15
+
16
+ #from modules.processing import Processed, process_images
17
+ from modules import images,processing
18
+ from modules.processing import process_images, Processed
19
+ from modules.processing import Processed
20
+ from modules.shared import opts, cmd_opts, state
21
+ class Script(scripts.Script):
22
+ #def run(self,p,n0,dns,ns1,ns2,nr1,nr2 ,loops,nSingle):
23
+ # return self.runBasic(p,n0,dns,ns1,ns2,nr1,nr2 ,loops,nSingle)
24
+
25
+ def run(self,p,cfg,eta,dns ,loops,nSingle):
26
+ return self.runAdvanced(p,cfg,eta,dns ,loops,nSingle)
27
+
28
+ def show(self, is_img2img):
29
+ self.isAdvanced=True
30
+ return True
31
+ def title(self):
32
+ return "CFG Scheduling" if (self.isAdvanced) else "CFG Auto"
33
+
34
+ def uiAdvanced(self, is_img2img):
35
+
36
+ placeholder="The steps on which to modify, in format step:value - example: 0:10 ; 10:15"
37
+ n0 = gr.Textbox(label="CFG",placeholder=placeholder)
38
+ placeholder="You can also use functions like: 0: math.fabs(-t) ; 1: (1-t/T) ; 2:=e ;3:t*d"
39
+ n1 = gr.Textbox(label="ETA",placeholder=placeholder)
40
+ #loops
41
+ #n2 = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=1)
42
+ n2 = gr.Slider(minimum=0, maximum=1, step=0.01, label='Target Denoising : Decay per Batch', value=0.5)
43
+ with gr.Row():
44
+ loops=gr.Number(value=1,precision=0,label="loops")
45
+ nSingle= gr.Checkbox(label="Loop returns one")
46
+
47
+ return [n0,n1,n2 ,loops,nSingle]
48
+ #uiBasic
49
+ def uiAuto(self, is_img2img):
50
+ self.autoOptions={"b1":"Blur First V1","b2":"Blur Last","f1":"Force at Start V1","f2":"Force Allover"}
51
+ with gr.Row():
52
+ dns = gr.Slider(minimum=0, maximum=1, step=0.01, label='Target Denoising : Decay per Batch', value=0.25)
53
+ n0=gr.Dropdown(list(self.autoOptions.values()),value=self.autoOptions["b1"],label="Scheduler")
54
+ with gr.Row():
55
+ n1 = gr.Slider(minimum=0, maximum=100, step=1, label='Main Strength', value=10)
56
+ n2 = gr.Slider(minimum=0, maximum=100, step=1, label='Sub- Strength', value=10)
57
+ with gr.Row():
58
+ n3 = gr.Slider(minimum=0, maximum=100, step=1, label='Main Range', value=10)
59
+ n4 = gr.Slider(minimum=0, maximum=100, step=1, label='Sub- Range', value=10)
60
+ with gr.Row():
61
+ loops=gr.Number(value=1,precision=0,label="loops")
62
+ nSingle= gr.Checkbox(label="Loop returns one")
63
+ return [n0,dns, n1,n2,n3,n4 ,loops,nSingle]
64
+
65
+ def ui(self, is_img2img):
66
+ return self.uiAdvanced(is_img2img) if (self.isAdvanced) else self.uiAuto(is_img2img)
67
+
68
+ def prepare(self,p,cfg,eta):
69
+ sampler_name=p.sampler_name
70
+ if not sampler_name:
71
+ print("Warning: sampler not specified. Using Euler a")
72
+ sampler_name="Euler a"
73
+ #if p.sampler_index in (0,1,2,7,8,10,14):
74
+ if sampler_name in ('Euler a','Euler','LMS','DPM++ 2M','DPM fast','LMS Karras','DPM++ 2M Karras'):
75
+ max_mul_count = p.steps * p.batch_size
76
+ steps_per_mul = p.batch_size
77
+ #elif p.sampler_index in (3,4,5,6,11,12,13):
78
+ elif sampler_name in ('Heun','DPM2','DPM2 a','DPM++ 2S a','DPM2 Karras','DPM2 a Karras','DPM++ 2S a Karras'):
79
+ max_mul_count = ((p.steps*2)-1) * p.batch_size
80
+ steps_per_mul = 2 * p.batch_size
81
+ #elif p.sampler_index==15: # ddim
82
+ elif sampler_name=='DDIM': # ddim
83
+ max_mul_count = fix_ddim_step_count(p.steps)
84
+ steps_per_mul = 1
85
+ #elif p.sampler_index==16: # plms
86
+ elif sampler_name=='PLMS': # plms
87
+ max_mul_count = fix_ddim_step_count(p.steps)+1
88
+ steps_per_mul = 1
89
+ else:
90
+ print("Not supported sampler", p.sampler_name, p.sampler_index)
91
+ return # 9=dpm adaptive
92
+
93
+
94
+
95
+ #print("it is:",n0t)
96
+ #for x in range(int(n)):
97
+ self.p=p
98
+ cfg=cfg.strip()
99
+ eta=eta.strip()
100
+ if cfg:
101
+ p.cfg_scale=Fake_float(p.cfg_scale,self.split(cfg,str(p.cfg_scale)) , max_mul_count, steps_per_mul)
102
+ #p.cfg_scale.p=p
103
+ if eta:
104
+ if (eta.find("@")==-1):
105
+ p.s_churn=p.eta =Fake_float(p.eta or 1,self.split(eta,str(p.eta)) , max_mul_count, steps_per_mul)
106
+ #print(p.s_noise)
107
+
108
+ #Fake_float(p.s_churn or 1,self.split(eta,str(p.s_churn)), max_mul_count, steps_per_mul)
109
+ else:
110
+ eta=eta.split("@")
111
+ if eta[0].strip()!="":
112
+ p.s_churn=Fake_float(p.s_churn or 1,self.split(eta[0],str(p.s_churn)), max_mul_count, steps_per_mul)
113
+ if len(eta)>1 and eta[1].strip()!="":
114
+ p.s_noise=Fake_float(p.s_noise or 1,self.split(eta[1],str(p.s_noise)), max_mul_count, steps_per_mul)
115
+ if len(eta)>2 and eta[2].strip()!="":
116
+ p.s_tmin=Fake_float(p.s_tmin or 1,self.split(eta[2],str(p.s_tmin)), max_mul_count, steps_per_mul)
117
+ if len(eta)>3 and eta[3].strip()!="":
118
+ p.s_tmax=Fake_float(p.s_tmax or 1,self.split(eta[2],str(p.s_tmax)), max_mul_count, steps_per_mul)
119
+
120
+
121
+ #p.cfg_scale.p=p
122
+ #
123
+
124
+
125
+
126
+ def runBasic(self,p,n0,dns,ns1,ns2,nr1,nr2 ,loops,nSingle):
127
+ if(n0==self.autoOptions["b1"]):
128
+ cfg=f"""0:{ns2}/2 if (t<T* (({nr1}/100)**2)) else cfg"""
129
+ eta=f"""0:{ns1}+1 if (t<T*(({nr1}/100)**2) ) else e*({nr2}/50)"""
130
+ elif(n0==self.autoOptions["f1"]):
131
+ cfg=f"""0:({ns1}*4)*((1-d**0.5)**1.5)/(t*(30-cfg)/30+1)/(l*2+1) if (t<T*{nr1}/100) else 0.1 if (t<T*({nr1}+{nr2}-{nr1}*{nr2})/100) else 7-d*7"""
132
+ eta=f"""0:0.8+{ns2}/25-min(t*0.1, 0.8+{ns2}/25 -0.01) if (t<T*{nr1}/100) else {ns2}/(10*(1+l*0.5)) if (t<T*({nr1}+{nr2}-{nr1}*{nr2})/100) else 1+e"""
133
+ elif(n0==self.autoOptions["b2"]):
134
+ cfg=f"""0:cfg if (e>{nr1}/100 or e<(1-({nr1}+{nr2}*(100-{nr1})/100)/100)) else {ns2}/10"""
135
+ eta=f"""0:e if (e>{nr1}/100 or e<(1-({nr1}+{nr2}*(100-{nr1})/100)/100)) else {ns1}/10"""
136
+ elif(n0==self.autoOptions["f2"]):
137
+ cfg=f"""= min(40,max(0,cfg+x(t)*({ns2}-50)/2 )) """
138
+ eta=f"""0:(1-(t%(2+ 10-.1*{nr1} ))/ (2+10-.1*{nr1}) )*{ns1}*.1 * (e*(100-{nr2})+{nr2})*.01 """
139
+ self.cfgsib={"Scheduler":n0,'Main Strength':ns1,'Sub- Strength':ns2,'Main Range':nr1,'Sub- Range':nr2}
140
+ self.cfgsib={"Scheduler":n0,'Main Strength':ns1,'Sub- Strength':ns2,'Main Range':nr1,'Sub- Range':nr2}
141
+ return self.runAdvanced(p,cfg,eta,dns ,loops,nSingle)
142
+
143
+
144
+ def runAdvanced(self, p, cfg,eta,dns ,loops,nSingle):
145
+ self.initSeed=p.seed
146
+ #loops=p.batch_size
147
+ loops = loops if (loops>0) else 1
148
+
149
+ batch_count=p.n_iter
150
+ state.job_count = loops*p.n_iter
151
+ p.denoising_strength=p.denoising_strength or (1 if (self.isAdvanced) else 0.2)
152
+ initial_denoising_strength=p.denoising_strength
153
+ p.do_not_save_grid = True
154
+ if hasattr(p,"init_images"):
155
+ original_init_image = p.init_images
156
+ initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
157
+ else:
158
+ original_init_image=None
159
+
160
+ all_images = []
161
+ cfgsi=" loops:"+str(loops)+" terget denoising: "+str(dns)+"\nCFG: "+cfg+"\nETA: "+eta+"\n"
162
+
163
+ p.extra_generation_params = {
164
+ "CFG Scheduler Info":cfgsi,
165
+ }
166
+
167
+
168
+ #if basic, add basic info as well
169
+ if (self.isAdvanced==False):
170
+ self.cfgsib.update(p.extra_generation_params)
171
+ p.extra_generation_params=self.cfgsib
172
+
173
+ if loops>1:
174
+ processing.fix_seed(p)
175
+ #self.initDenoise=p.denoising_strength
176
+
177
+ for n in range(batch_count):
178
+ proc=None
179
+ history = []
180
+ p.denoising_strength=initial_denoising_strength
181
+ if (original_init_image!=None):
182
+ p.init_images=original_init_image
183
+ for loop in range(loops):
184
+ if opts.img2img_color_correction and original_init_image!=None:
185
+ p.color_corrections = initial_color_corrections
186
+
187
+ p.batch_size = 1
188
+ p.n_iter = 1
189
+ self.loop=loop
190
+ self.prepare(p, cfg,eta)
191
+ proc = process_images(p)
192
+ if loop==0:
193
+ self.initInfo=proc.info
194
+ self.initSeed=proc.seed
195
+ if len(proc.images)>0:
196
+ history.append(proc.images[0])
197
+ p.seed+=1
198
+ p.init_images=[proc.images[0]]
199
+ #p.denoising_strength=min(max(p.denoising_strength * dns, 0.05), 1)
200
+ p.denoising_strength=initial_denoising_strength+(dns-initial_denoising_strength)*(loop+1)/(loops)
201
+ else:#interrupted
202
+ break
203
+ #print("New denoising:"+str(p.denoising_strength)+"\n" )
204
+ all_images += history
205
+ if loops>0:#TODO:maybe this is not needed
206
+ p.seed=self.initSeed
207
+ #return proc if (loops==1 and p.batch_size==1) else Processed(p, all_images, self.initSeed, self.initInfo)
208
+ return proc if(nSingle) else Processed(p, all_images, self.initSeed, self.initInfo)
209
+
210
+
211
+
212
+
213
+
214
+
215
+
216
+ def peek(self,val):
217
+ print(val)
218
+ return val
219
+
220
+ def split(self,src,default='0'):
221
+ p=self.p
222
+ self.P=copy.copy({
223
+ 'cfg':float(str(p.cfg_scale)),
224
+ 'd':p.denoising_strength or 1,
225
+ 'l':self.loop,
226
+ 'min':min,
227
+ 'max':max,
228
+ 'abs':abs,
229
+ 'pow':pow,
230
+ 'pi':math.pi,
231
+ 'x':self._interpolate,
232
+ 'int':int,
233
+ 'floor':math.floor,
234
+ 'peek':self.peek,
235
+ })
236
+
237
+ if src[0:4]=="eval":
238
+ src="0:"+src[4:]
239
+ if src[0]=="=":
240
+ src="0:"+src[1:]
241
+
242
+ #clean up
243
+ while src[len(src)-1] in [";"," "]:
244
+ src=src[0:len(src)-1]
245
+ while src[0] in [";"," "]:
246
+ src=src[1:]
247
+
248
+ arr0 = src.split(';')##2
249
+
250
+ #resort array accounting for commas in indecies
251
+ arr=[]
252
+ for j in arr0:
253
+ #print(j)
254
+ v=j.split(":")
255
+ q=v[0].split(",")
256
+
257
+ for i in q:
258
+ arr.append(i+":"+v[1])
259
+
260
+
261
+
262
+
263
+ arr.sort(key=self._sort)
264
+ s=[]
265
+ val=default
266
+ for j in range(p.steps+1):
267
+ i=0
268
+ while i<len(arr) and i<=j:
269
+ v=arr[i].split(":")
270
+ #s=proc[j].n_iter
271
+ if math.floor(int(v[0]) if v[0].isnumeric() else float(v[0])*p.steps)==j:
272
+ val=v[1].strip()
273
+ break
274
+ i=i+1
275
+
276
+ #lets just evaluate all
277
+ if val[0]=="=":
278
+ val=val[1:]
279
+
280
+ _eta=1-j/p.steps
281
+ params={'t':j,'T':p.steps,'math':math,'p':p,'e':float(str(_eta))}
282
+
283
+ params.update(copy.copy(self.P))
284
+ #print(params)
285
+ s.append(float(eval(val,params)))
286
+ #end while loop
287
+ #else:
288
+ #s.append(float(val))
289
+ print(np.round(s,1),"\n")
290
+ return s
291
+ #limits a range of a value
292
+ def _interpolate(self,v,start=0,end=None,m=1):
293
+ end=end or self.p.steps
294
+ v=min(max(v,start),end)-start
295
+ return v*m/(end-start)+(1 if m<0 else 0)
296
+
297
+ def _sort(self,a):
298
+ _=a.split(":")[0]#splitter tester
299
+ return math.floor(int(_) if (_.isnumeric()) else float(_)*self.p.steps)
300
+
301
+ def evaluate (self,src):
302
+ s=[]
303
+ p=self.p
304
+ T=self.p.steps
305
+ for j in range(T+1):
306
+ _eta=1-j/p.steps
307
+ params={'t':j,'T':p.steps,'math':math,'p':p,'e':_eta}
308
+ params.update(self.P)
309
+ s.append(float(eval(src,params)))
310
+ return s
311
+
312
+ class Fake_float(float):
313
+ def __new__(self, value, arr, max_mul_count, steps_per_mul):
314
+ return float.__new__(self, value)
315
+
316
+ def __init__(self, value, arr, max_mul_count, steps_per_mul):
317
+ float.__init__(value)
318
+ self.arr = arr
319
+ self.curstep = 0
320
+ #self.p=p
321
+
322
+ #self.orig_value = orig_value
323
+ #self.target_value = target_value
324
+ self.max_mul_count = max_mul_count
325
+ self.current_mul = 0
326
+ self.steps_per_mul = steps_per_mul
327
+ self.current_step = 0 #fake
328
+ self.max_step_count = (max_mul_count // steps_per_mul) + (max_mul_count % steps_per_mul > 0)
329
+
330
+
331
+ def __mul__(self,other):
332
+ return self.fake_mul(other)
333
+
334
+ def __rmul__(self,other):
335
+ return self.fake_mul(other)
336
+
337
+ #def __add__(self,other):
338
+ #print("ADD!")
339
+ # return self.get_fake_value(other)+other
340
+ #def __sub__(self,other):
341
+ #print("SUB!")
342
+ # return self.get_fake_value(other)-other
343
+
344
+
345
+
346
+ def fake_mul(self,other):
347
+ #print("MUL!")
348
+ return self.get_fake_value(other) * other
349
+
350
+
351
+ def get_fake_value(self,other):
352
+ if (self.max_step_count==1):
353
+ fake_value = self.arr[0]
354
+ else:
355
+
356
+ fake_value = self.arr[self.curstep]
357
+ self.current_mul = (self.current_mul+1) % self.max_mul_count
358
+ self.curstep = (self.current_mul) // self.steps_per_mul
359
+ self.current_step+=1#FAKE STEP
360
+ return fake_value
361
+
362
+
363
+
364
+
365
+ def fix_ddim_step_count(steps):
366
+ valid_step = 999 / (1000 // steps)
367
+ if valid_step == int(valid_step): steps=int(valid_step)+1
368
+ if ((1000 % steps)!=0): steps +=1
369
+ return steps
scripts/ContorlNet_I2I_sequence_toyxyz_V2.py ADDED
@@ -0,0 +1,367 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import os
3
+ import shutil
4
+
5
+ import cv2
6
+ import gradio as gr
7
+ import numpy as np
8
+ import modules.scripts as scripts
9
+
10
+ from modules import images, processing
11
+ from modules.processing import process_images, Processed
12
+ from modules.shared import opts
13
+ from PIL import Image, ImageFilter, ImageColor, ImageOps
14
+ from pathlib import Path
15
+ from typing import List, Tuple, Iterable
16
+
17
+
18
+ #Returns a list of images located in the input path. For ControlNet iamges
19
+ def get_all_frames_from_path(path):
20
+ if not os.path.isdir(path):
21
+ return None
22
+ frame_list = []
23
+ for filename in sorted(os.listdir(path)):
24
+ if filename.endswith(".jpg") or filename.endswith(".png"):
25
+ img_path = os.path.join(path, filename)
26
+ img = cv2.imread(img_path)
27
+ if img is not None:
28
+ frame_list.append(img)
29
+ frame_list.insert(0, frame_list[0])
30
+ return frame_list
31
+
32
+
33
+ #Returns a list of images located in the input path. For Color iamges
34
+ def get_images_from_path(path):
35
+ if not os.path.isdir(path):
36
+ return None
37
+ images = []
38
+ for filename in os.listdir(path):
39
+ if filename.endswith('.jpg') or filename.endswith('.png'):
40
+ img_path = os.path.join(path, filename)
41
+ img = Image.open(img_path)
42
+ images.append(img)
43
+ images.append(images[-1])
44
+ images.insert(0, images[0])
45
+ return images
46
+
47
+ #Returns the number of the smallest number in the entire image sequence list. For ControlNet
48
+ def get_min_frame_num(video_list):
49
+ min_frame_num = -1
50
+ for video in video_list:
51
+ if video is None:
52
+ continue
53
+ else:
54
+ frame_num = len(video)
55
+ print(frame_num)
56
+ if min_frame_num < 0:
57
+ min_frame_num = frame_num
58
+ elif frame_num < min_frame_num:
59
+ min_frame_num = frame_num
60
+ return min_frame_num
61
+
62
+
63
+ #Blende method
64
+
65
+
66
+ def basic(target, blend, opacity):
67
+ return target * opacity + blend * (1-opacity)
68
+
69
+ def blender(func):
70
+ def blend(target, blend, opacity=1, *args):
71
+ res = func(target, blend, *args)
72
+ res = basic(res, blend, opacity)
73
+ return np.clip(res, 0, 1)
74
+ return blend
75
+
76
+
77
+ class Blend:
78
+ @classmethod
79
+ def method(cls, name):
80
+ return getattr(cls, name)
81
+
82
+ normal = basic
83
+
84
+ @staticmethod
85
+ @blender
86
+ def darken(target, blend, *args):
87
+ return np.minimum(target, blend)
88
+
89
+ @staticmethod
90
+ @blender
91
+ def multiply(target, blend, *args):
92
+ return target * blend
93
+
94
+ @staticmethod
95
+ @blender
96
+ def color_burn(target, blend, *args):
97
+ return 1 - (1-target)/blend
98
+
99
+ @staticmethod
100
+ @blender
101
+ def linear_burn(target, blend, *args):
102
+ return target+blend-1
103
+
104
+ @staticmethod
105
+ @blender
106
+ def lighten(target, blend, *args):
107
+ return np.maximum(target, blend)
108
+
109
+ @staticmethod
110
+ @blender
111
+ def screen(target, blend, *args):
112
+ return 1 - (1-target) * (1-blend)
113
+
114
+ @staticmethod
115
+ @blender
116
+ def color_dodge(target, blend, *args):
117
+ return target/(1-blend)
118
+
119
+ @staticmethod
120
+ @blender
121
+ def linear_dodge(target, blend, *args):
122
+ return target+blend
123
+
124
+ @staticmethod
125
+ @blender
126
+ def overlay(target, blend, *args):
127
+ return (target>0.5) * (1-(2-2*target)*(1-blend)) +\
128
+ (target<=0.5) * (2*target*blend)
129
+
130
+ @staticmethod
131
+ @blender
132
+ def soft_light(target, blend, *args):
133
+ return (blend>0.5) * (1 - (1-target)*(1-(blend-0.5))) +\
134
+ (blend<=0.5) * (target*(blend+0.5))
135
+
136
+ @staticmethod
137
+ @blender
138
+ def hard_light(target, blend, *args):
139
+ return (blend>0.5) * (1 - (1-target)*(2-2*blend)) +\
140
+ (blend<=0.5) * (2*target*blend)
141
+
142
+ @staticmethod
143
+ @blender
144
+ def vivid_light(target, blend, *args):
145
+ return (blend>0.5) * (1 - (1-target)/(2*blend-1)) +\
146
+ (blend<=0.5) * (target/(1-2*blend))
147
+
148
+ @staticmethod
149
+ @blender
150
+ def linear_light(target, blend, *args):
151
+ return (blend>0.5) * (target + 2*(blend-0.5)) +\
152
+ (blend<=0.5) * (target + 2*blend)
153
+
154
+ @staticmethod
155
+ @blender
156
+ def pin_light(target, blend, *args):
157
+ return (blend>0.5) * np.maximum(target,2*(blend-0.5)) +\
158
+ (blend<=0.5) * np.minimum(target,2*blend)
159
+
160
+ @staticmethod
161
+ @blender
162
+ def difference(target, blend, *args):
163
+ return np.abs(target - blend)
164
+
165
+ @staticmethod
166
+ @blender
167
+ def exclusion(target, blend, *args):
168
+ return 0.5 - 2*(target-0.5)*(blend-0.5)
169
+
170
+ blend_methods = [i for i in Blend.__dict__.keys() if i[0]!='_' and i!='method']
171
+
172
+
173
+
174
+ def blend_images(base_img, blend_img, blend_method, blend_opacity, do_invert):
175
+
176
+ img_base = np.array(base_img.convert("RGB")).astype(np.float64)/255
177
+
178
+ if do_invert:
179
+ img_to_blend = ImageOps.invert(blend_img.convert('RGB'))
180
+ else:
181
+ img_to_blend = blend_img
182
+
183
+ img_to_blend = img_to_blend.resize((int(base_img.width), int(base_img.height)))
184
+
185
+ img_to_blend = np.array(img_to_blend.convert("RGB")).astype(np.float64)/255
186
+
187
+ img_blended = Blend.method(blend_method)(img_to_blend, img_base, blend_opacity)
188
+
189
+ img_blended *= 255
190
+
191
+ img_blended = Image.fromarray(img_blended.astype(np.uint8), mode='RGB')
192
+
193
+ return img_blended
194
+
195
+
196
+ #Define UI and script properties.
197
+ class Script(scripts.Script):
198
+
199
+ def title(self):
200
+ return "controlnet I2I sequence_toyxyz_v2"
201
+
202
+ def show(self, is_img2img):
203
+ return is_img2img
204
+
205
+ def ui(self, is_img2img):
206
+
207
+ ctrls_group = ()
208
+ max_models = opts.data.get("control_net_max_models_num", 1)
209
+
210
+ input_list = []
211
+
212
+ with gr.Group():
213
+ with gr.Accordion("ControlNet-I2I-sequence-toyxyz", open = True):
214
+ with gr.Column():
215
+
216
+ feed_prev_frame = gr.Checkbox(value=False, label="Feed previous frame / Reduce flickering by feeding the previous frame image generated by Img2Img")
217
+
218
+ use_init_img = gr.Checkbox(value=False, label="Blend color image / Blend the color image sequence with the initial Img2Img image or previous frame")
219
+
220
+ use_TemporalNet = gr.Checkbox(value=False, label="Use TemporalNet / Using TemporalNet to reduce flicker between image sequences. Add TemporalNet in addition to the multi-controlnet you need. It should be placed at the end of the controlnet list.")
221
+
222
+ blendmode = gr.Dropdown(blend_methods, value='normal', label='Blend mode / Choose how to blend the color image with the Previous frame or Img2Img initial image')
223
+
224
+ opacityvalue = gr.Slider(0, 1, value=0, label="Opacity / Previous frame or Img2Img initial image + (color image * opacity)", info="Choose betwen 0 and 1")
225
+
226
+
227
+ for i in range(max_models):
228
+ input_path = gr.Textbox(label=f"ControlNet-{i}", placeholder="image sequence path")
229
+ input_list.append(input_path)
230
+
231
+ tone_image_path = gr.Textbox(label=f"Color_Image / Color images to be used for Img2Img in sequence", placeholder="image sequence path")
232
+
233
+ output_path = gr.Textbox(label=f"Output_path / Deletes the contents located in the path, and creates a new path if it does not exist", placeholder="Output path")
234
+
235
+ ctrls_group += tuple(input_list) + (use_TemporalNet, use_init_img, opacityvalue, blendmode, feed_prev_frame, tone_image_path, output_path)
236
+
237
+ return ctrls_group
238
+
239
+
240
+
241
+ #Image Generate Definition
242
+ def run(self, p, *args):
243
+
244
+ path = p.outpath_samples
245
+
246
+ output_path = args[-1] # get the last argument, which is the output path
247
+
248
+ feedprev = args[-3]
249
+
250
+ blendm = args[-4]
251
+
252
+ opacityval = args[-5]
253
+
254
+ useinit = args[-6]
255
+
256
+ usetempo = args[-7]
257
+
258
+
259
+ # Check whether the output path exists, if it does, delete it and create a new one.
260
+ if os.path.isdir(output_path):
261
+ for file in os.scandir(output_path):
262
+ os.remove(file.path)
263
+ else :
264
+ os.mkdir(output_path)
265
+
266
+ #Get the number of controlnet models.
267
+ video_num = opts.data.get("control_net_max_models_num", 1)
268
+
269
+ # Get the ControlNet image sequence list.
270
+ image_list = [get_all_frames_from_path(image) for image in args[:video_num]]
271
+
272
+ # Get a list of color image sequences.
273
+ color_image_list = get_images_from_path(args[-2])
274
+
275
+ # Get the first frame
276
+ previmg = p.init_images
277
+
278
+ tempoimg = p.init_images[0]
279
+
280
+ #If img2img color correction is enabled in webui settings, color correction is performed based on the first frame.
281
+ initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
282
+
283
+ #Save initial img2img image
284
+ initial_image = p.init_images[0]
285
+
286
+ # Get the total number of frames.
287
+ frame_num = get_min_frame_num(image_list)
288
+
289
+ # image processing
290
+ if frame_num > 0:
291
+ output_image_list = []
292
+
293
+ for frame in range(frame_num):
294
+ copy_p = copy.copy(p)
295
+ copy_p.control_net_input_image = []
296
+ for video in image_list:
297
+ if video is None:
298
+ continue
299
+ copy_p.control_net_input_image.append(video[frame])
300
+
301
+ if usetempo == True :
302
+ copy_p.control_net_input_image.append(tempoimg)
303
+
304
+
305
+ if color_image_list and feedprev == False:
306
+
307
+ if frame<len(color_image_list):
308
+ tone_image = color_image_list[frame+1]
309
+
310
+ if useinit:
311
+ tone_image = blend_images(initial_image, tone_image, blendm, opacityval, False)
312
+
313
+ p.init_images = [tone_image.convert("RGB")]
314
+
315
+ proc = process_images(copy_p)
316
+
317
+
318
+
319
+ if feedprev == True and useinit == False:
320
+ if previmg is None:
321
+ continue
322
+ else:
323
+ previmg = proc.images[0]
324
+
325
+ if frame == 0:
326
+ previmg = initial_image
327
+
328
+ p.init_images = [previmg]
329
+
330
+ if opts.img2img_color_correction:
331
+ p.color_corrections = initial_color_corrections
332
+
333
+
334
+ if feedprev == True and color_image_list and useinit:
335
+ if previmg is None:
336
+ continue
337
+ else:
338
+ previmg = proc.images[0]
339
+
340
+ if frame == 0:
341
+ previmg = initial_image
342
+
343
+ previmg = blend_images(previmg, color_image_list[frame+1], blendm, opacityval, False)
344
+
345
+
346
+ p.init_images = [previmg]
347
+
348
+ if opts.img2img_color_correction:
349
+ p.color_corrections = initial_color_corrections
350
+
351
+ img = proc.images[0]
352
+
353
+ if usetempo == True :
354
+ if frame > 0 :
355
+ tempoimg = proc.images[0]
356
+
357
+
358
+ #Save image
359
+ if(frame>0):
360
+ images.save_image(img, output_path, f"Frame_{frame}")
361
+ copy_p.close()
362
+
363
+
364
+ else:
365
+ proc = process_images(p)
366
+
367
+ return proc
scripts/LoopbackWave.py ADDED
@@ -0,0 +1,348 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import platform
3
+ import numpy as np
4
+ from tqdm import trange
5
+ import math
6
+ import subprocess as sp
7
+ import string
8
+ import random
9
+ from functools import reduce
10
+ import re
11
+
12
+ import modules.scripts as scripts
13
+ import gradio as gr
14
+
15
+ from datetime import datetime
16
+ from modules import processing, shared, sd_samplers, images
17
+ from modules.processing import Processed
18
+ from modules.sd_samplers import samplers
19
+ from modules.shared import opts, cmd_opts, state
20
+ import subprocess
21
+
22
+
23
+ wave_completed_regex = r'@wave_completed\(([\-]?[0-9]*\.?[0-9]+), ?([\-]?[0-9]*\.?[0-9]+)\)'
24
+ wave_remaining_regex = r'@wave_remaining\(([\-]?[0-9]*\.?[0-9]+), ?([\-]?[0-9]*\.?[0-9]+)\)'
25
+
26
+ def run_cmd(cmd):
27
+ cmd = list(map(lambda arg: str(arg), cmd))
28
+ print("Executing %s" % " ".join(cmd))
29
+ popen_params = {"stdout": sp.DEVNULL, "stderr": sp.PIPE, "stdin": sp.DEVNULL}
30
+
31
+ if os.name == "nt":
32
+ popen_params["creationflags"] = 0x08000000
33
+
34
+ proc = sp.Popen(cmd, **popen_params)
35
+ out, err = proc.communicate() # proc.wait()
36
+ proc.stderr.close()
37
+
38
+ if proc.returncode:
39
+ raise IOError(err.decode("utf8"))
40
+
41
+ del proc
42
+
43
+ def encode_video(input_pattern, starting_number, output_dir, fps, quality, encoding, create_segments, segment_duration, ffmpeg_path):
44
+ two_pass = (encoding == "VP9 (webm)")
45
+ alpha_channel = ("webm" in encoding)
46
+ suffix = "webm" if "webm" in encoding else "mp4"
47
+ output_location = output_dir + f".{suffix}"
48
+
49
+ encoding_lib = {
50
+ "VP9 (webm)": "libvpx-vp9",
51
+ "VP8 (webm)": "libvpx",
52
+ "H.264 (mp4)": "libx264",
53
+ "H.265 (mp4)": "libx265",
54
+ }[encoding]
55
+
56
+ args = [
57
+ "-framerate", fps,
58
+ "-start_number", int(starting_number),
59
+ "-i", input_pattern,
60
+ "-c:v", encoding_lib,
61
+ "-b:v","0",
62
+ "-crf", quality,
63
+ ]
64
+
65
+ if encoding_lib == "libvpx-vp9":
66
+ args += ["-pix_fmt", "yuva420p"]
67
+
68
+ if(ffmpeg_path == ""):
69
+ ffmpeg_path = "ffmpeg"
70
+ if(platform.system == "Windows"):
71
+ ffmpeg_path += ".exe"
72
+
73
+ print("\n\n")
74
+ if two_pass:
75
+ first_pass_args = args + [
76
+ "-pass", "1",
77
+ "-an",
78
+ "-f", "null",
79
+ os.devnull
80
+ ]
81
+
82
+ second_pass_args = args + [
83
+ "-pass", "2",
84
+ output_location
85
+ ]
86
+
87
+ print("Running first pass ffmpeg encoding")
88
+
89
+ run_cmd([ffmpeg_path] + first_pass_args)
90
+ print("Running second pass ffmpeg encoding. This could take awhile...")
91
+ run_cmd([ffmpeg_path] + second_pass_args)
92
+ else:
93
+ print("Running ffmpeg encoding. This could take awhile...")
94
+ run_cmd([ffmpeg_path] + args + [output_location])
95
+
96
+ if(create_segments):
97
+ print("Segmenting video")
98
+ run_cmd([ffmpeg_path] + [
99
+ "-i", output_location,
100
+ "-f", "segment",
101
+ "-segment_time", segment_duration,
102
+ "-vcodec", "copy",
103
+ "-acodec", "copy",
104
+ f"{output_dir}.%d.{suffix}"
105
+ ])
106
+
107
+ def set_weights(match_obj, wave_progress):
108
+ weight_0 = 0
109
+ weight_1 = 0
110
+ if match_obj.group(1) is not None:
111
+ weight_0 = float(match_obj.group(1))
112
+ if match_obj.group(2) is not None:
113
+ weight_1 = float(match_obj.group(2))
114
+
115
+ max_weight = max(weight_0, weight_1)
116
+ min_weight = min(weight_0, weight_1)
117
+
118
+ weight_range = max_weight - min_weight
119
+ weight = min_weight + weight_range * wave_progress
120
+ return str(weight)
121
+
122
+
123
+ class Script(scripts.Script):
124
+ def title(self):
125
+ return "Loopback Wave V1.4.1"
126
+
127
+ def show(self, is_img2img):
128
+ return is_img2img
129
+
130
+ def ui(self, is_img2img):
131
+ frames = gr.Slider(minimum=1, maximum=2048, step=1, label='Frames', value=100)
132
+ frames_per_wave = gr.Slider(minimum=0, maximum=120, step=1, label='Frames Per Wave', value=20)
133
+ denoising_strength_change_amplitude = gr.Slider(minimum=0, maximum=1, step=0.01, label='Max additional denoise', value=0.6)
134
+ denoising_strength_change_offset = gr.Number(minimum=0, maximum=180, step=1, label='Wave offset (ignore this if you don\'t know what it means)', value=0)
135
+ initial_image_number = gr.Number(minimum=0, label='Initial generated image number', value=0)
136
+
137
+ save_prompts = gr.Checkbox(label='Save prompts as text file', value=True)
138
+ prompts = gr.Textbox(label="Prompt Changes", lines=5, value="")
139
+
140
+ save_video = gr.Checkbox(label='Save results as video', value=True)
141
+ output_dir = gr.Textbox(label="Video Name", lines=1, value="")
142
+ video_fps = gr.Slider(minimum=1, maximum=120, step=1, label='Frames per second', value=10)
143
+ video_quality = gr.Slider(minimum=0, maximum=60, step=1, label='Video Quality (crf)', value=40)
144
+ video_encoding = gr.Dropdown(label='Video encoding', value="VP9 (webm)", choices=["VP9 (webm)", "VP8 (webm)", "H.265 (mp4)", "H.264 (mp4)"])
145
+ ffmpeg_path = gr.Textbox(label="ffmpeg binary. Only set this if it fails otherwise.", lines=1, value="")
146
+
147
+ segment_video = gr.Checkbox(label='Cut video in to segments', value=True)
148
+ video_segment_duration = gr.Slider(minimum=10, maximum=60, step=1, label='Video Segment Duration (seconds)', value=20)
149
+
150
+
151
+ return [frames, denoising_strength_change_amplitude, frames_per_wave, denoising_strength_change_offset,initial_image_number, prompts, save_prompts, save_video, output_dir, video_fps, video_quality, video_encoding, ffmpeg_path, segment_video, video_segment_duration]
152
+
153
+ def run(self, p, frames, denoising_strength_change_amplitude, frames_per_wave, denoising_strength_change_offset, initial_image_number, prompts: str,save_prompts, save_video, output_dir, video_fps, video_quality, video_encoding, ffmpeg_path, segment_video, video_segment_duration):
154
+ processing.fix_seed(p)
155
+ batch_count = p.n_iter
156
+ p.extra_generation_params = {
157
+ "Max Additional Denoise": denoising_strength_change_amplitude,
158
+ "Frames per wave": frames_per_wave,
159
+ "Wave Offset": denoising_strength_change_offset,
160
+ }
161
+
162
+ # We save them ourselves for the sake of ffmpeg
163
+ p.do_not_save_samples = True
164
+
165
+ changes_dict = {}
166
+
167
+
168
+ p.batch_size = 1
169
+ p.n_iter = 1
170
+
171
+ output_images, info = None, None
172
+ initial_seed = None
173
+ initial_info = None
174
+
175
+ grids = []
176
+ all_images = []
177
+ original_init_image = p.init_images
178
+ state.job_count = frames * batch_count
179
+
180
+ initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
181
+ initial_denoising_strength = p.denoising_strength
182
+
183
+ if(output_dir==""):
184
+ output_dir = str(p.seed)
185
+ else:
186
+ output_dir = output_dir + "-" + str(p.seed)
187
+
188
+ loopback_wave_path = os.path.join(p.outpath_samples, "loopback-wave")
189
+ loopback_wave_images_path = os.path.join(loopback_wave_path, output_dir)
190
+
191
+ os.makedirs(loopback_wave_images_path, exist_ok=True)
192
+
193
+ p.outpath_samples = loopback_wave_images_path
194
+
195
+ prompts = prompts.strip()
196
+
197
+ if save_prompts:
198
+ with open(loopback_wave_images_path + "-prompts.txt", "w") as f:
199
+ generation_settings = [
200
+ "Generation Settings",
201
+ f"Total Frames: {frames}",
202
+ f"Frames Per Wave: {frames_per_wave}",
203
+ f"Wave Offset: {denoising_strength_change_offset}",
204
+ f"Base Denoising Strength: {initial_denoising_strength}",
205
+ f"Max Additional Denoise: {denoising_strength_change_amplitude}",
206
+ f"Initial Image Number: {initial_image_number}",
207
+ "",
208
+ "Video Encoding Settings",
209
+ f"Save Video: {save_video}"
210
+ ]
211
+
212
+ if save_video:
213
+ generation_settings = generation_settings + [
214
+ f"Framerate: {video_fps}",
215
+ f"Quality: {video_quality}",
216
+ f"Encoding: {video_encoding}",
217
+ f"Create Segmented Video: {segment_video}"
218
+ ]
219
+
220
+ if segment_video:
221
+ generation_settings = generation_settings + [f"Segment Duration: {video_segment_duration}"]
222
+
223
+ generation_settings = generation_settings + [
224
+ "",
225
+ "Prompt Details",
226
+ "Initial Prompt:" + p.prompt,
227
+ "",
228
+ "Negative Prompt:" + p.negative_prompt,
229
+ "",
230
+ "Frame change prompts:",
231
+ prompts
232
+ ]
233
+
234
+
235
+
236
+ f.write('\n'.join(generation_settings))
237
+
238
+ if prompts:
239
+ lines = prompts.split("\n")
240
+ for prompt_line in lines:
241
+ params = prompt_line.split("::")
242
+ if len(params) == 2:
243
+ changes_dict[params[0]] = { "prompt": params[1] }
244
+ elif len(params) == 3:
245
+ changes_dict[params[0]] = { "seed": params[1], "prompt": params[2] }
246
+ else:
247
+ raise IOError(f"Invalid input in prompt line: {prompt_line}")
248
+
249
+ raw_prompt = p.prompt
250
+
251
+ for n in range(batch_count):
252
+ history = []
253
+
254
+ # Reset to original init image at the start of each batch
255
+ p.init_images = original_init_image
256
+
257
+ seed_state = "adding"
258
+ current_seed = p.seed
259
+
260
+ for i in range(frames):
261
+ current_seed = p.seed
262
+ state.job = ""
263
+
264
+ if str(i) in changes_dict:
265
+ raw_prompt = changes_dict[str(i)]["prompt"]
266
+ state.job = "New prompt: %s\n" % raw_prompt
267
+
268
+ if "seed" in changes_dict[str(i)]:
269
+ current_seed = changes_dict[str(i)]["seed"]
270
+
271
+ if current_seed.startswith("+"):
272
+ seed_state = "adding"
273
+ current_seed = current_seed.strip("+")
274
+ elif current_seed.startswith("-"):
275
+ seed_state = "subtracting"
276
+ current_seed = current_seed.strip("-")
277
+ else:
278
+ seed_state = "constant"
279
+
280
+ current_seed = int(current_seed)
281
+ p.seed = current_seed
282
+
283
+
284
+
285
+ p.n_iter = 1
286
+ p.batch_size = 1
287
+ p.do_not_save_grid = True
288
+
289
+ if opts.img2img_color_correction:
290
+ p.color_corrections = initial_color_corrections
291
+
292
+
293
+ wave_progress = float(1)/(float(frames_per_wave - 1))*float(((float(i)%float(frames_per_wave)) + ((float(1)/float(180))*denoising_strength_change_offset)))
294
+ print(wave_progress)
295
+ new_prompt = re.sub(wave_completed_regex, lambda x: set_weights(x, wave_progress), raw_prompt)
296
+ new_prompt = re.sub(wave_remaining_regex, lambda x: set_weights(x, 1 - wave_progress), new_prompt)
297
+ p.prompt = new_prompt
298
+
299
+ print(new_prompt)
300
+
301
+ denoising_strength_change_rate = 180/frames_per_wave
302
+
303
+ cos = abs(math.cos(math.radians(i*denoising_strength_change_rate + denoising_strength_change_offset)))
304
+ p.denoising_strength = initial_denoising_strength + denoising_strength_change_amplitude - (cos * denoising_strength_change_amplitude)
305
+
306
+ state.job += f"Iteration {i + 1}/{frames}, batch {n + 1}/{batch_count}. Denoising Strength: {p.denoising_strength}"
307
+
308
+ processed = processing.process_images(p)
309
+
310
+ if initial_seed is None:
311
+ initial_seed = processed.seed
312
+ initial_info = processed.info
313
+
314
+ init_img = processed.images[0]
315
+
316
+ p.init_images = [init_img]
317
+
318
+ if seed_state == "adding":
319
+ p.seed = processed.seed + 1
320
+ elif seed_state == "subtracting":
321
+ p.seed = processed.seed - 1
322
+
323
+ image_number = int(initial_image_number + i)
324
+ images.save_image(init_img, p.outpath_samples, "", processed.seed, processed.prompt, forced_filename=str(image_number))
325
+
326
+ history.append(init_img)
327
+
328
+ grid = images.image_grid(history, rows=1)
329
+ if opts.grid_save:
330
+ images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
331
+
332
+ grids.append(grid)
333
+ all_images += history
334
+
335
+ if opts.return_grid:
336
+ all_images = grids + all_images
337
+
338
+ if save_video:
339
+ now = datetime.now() # get the current date and time
340
+ date_string = now.strftime("%Y-%m-%d")
341
+ input_pattern = os.path.join(loopback_wave_images_path, date_string,"%d.png")
342
+ encode_video(input_pattern, initial_image_number, loopback_wave_images_path, video_fps, video_quality, video_encoding, segment_video, video_segment_duration, ffmpeg_path)
343
+
344
+ processed = Processed(p, all_images, initial_seed, initial_info)
345
+
346
+ return processed
347
+
348
+
scripts/Txt2img2img2img.py ADDED
@@ -0,0 +1,291 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from modules.shared import opts, cmd_opts, state
2
+ from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images, images
3
+ from modules import paths, shared, modelloader, sd_models
4
+ from modules import sd_samplers
5
+ from PIL import Image, ImageDraw
6
+ import gradio as gr
7
+ import modules.scripts as scripts
8
+ from random import randint
9
+ from skimage.util import random_noise
10
+ from gradio.processing_utils import encode_pil_to_base64
11
+ import numpy as np
12
+ import os.path
13
+ from copy import deepcopy
14
+ def remap_range(value, minIn, MaxIn, minOut, maxOut):
15
+ if value > MaxIn: value = MaxIn;
16
+ if value < minIn: value = minIn;
17
+ if (MaxIn - minIn) == 0 : return maxOut
18
+ finalValue = ((value - minIn) / (MaxIn - minIn)) * (maxOut - minOut) + minOut;
19
+ return finalValue;
20
+
21
+ class Script(scripts.Script):
22
+ def title(self):
23
+ return "Txt2img2img2img"
24
+
25
+ def ui(self, is_img2img):
26
+ if is_img2img: return
27
+
28
+ # samplers list
29
+ img2img_samplers_names = [s.name for s in sd_samplers.samplers_for_img2img]
30
+
31
+ # models list
32
+ model_dir = "Stable-diffusion"
33
+ model_path = os.path.abspath(os.path.join(paths.models_path, model_dir))
34
+ model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], download_name="v1-5-pruned-emaonly.safetensors", ext_blacklist=[".vae.ckpt", ".vae.safetensors"])
35
+ model_list = [m.split("\\")[-1] for m in model_list]
36
+ model_list.append("Same")
37
+
38
+ t2iii_reprocess = gr.Slider(minimum=1, maximum=128, step=1, label='Number of img2img', value=1)
39
+ t2iii_steps = gr.Slider(minimum=1, maximum=120, step=1, label='img2img steps', value=24)
40
+ with gr.Row():
41
+ t2iii_cfg_scale = gr.Slider(minimum=1, maximum=30, step=0.1, label='img2img cfg scale ', value=8.3)
42
+ t2iii_cfg_scale_end = gr.Slider(minimum=0, maximum=30, step=0.1, label='img2img cfg end scale (0=disabled) ', value=0)
43
+ with gr.Row():
44
+ t2iii_denoising_strength = gr.Slider(minimum=0, maximum=1, step=0.01, label='img2img denoising strength ', value=0.42)
45
+ t2iii_patch_end_denoising = gr.Slider(minimum=0, maximum=1, step=0.01, label='Last img denoising (0=disabled)', value=0)
46
+ t2iii_seed_shift = gr.Slider(minimum=-1, maximum=1000000, step=1, label='img2img new seed+ (-1 for random)', value=1)
47
+ with gr.Row():
48
+ t2iii_patch_upscale = gr.Checkbox(label='Patch upscale', value=False)
49
+ t2iii_patch_shift = gr.Checkbox(label='Patch upscale shift grid', value=True)
50
+ t2iii_save_first = gr.Checkbox(label='Save first image', value=False)
51
+ t2iii_only_last = gr.Checkbox(label='Only save last img2img', value=True)
52
+ t2iii_face_correction = gr.Checkbox(label='Face correction on all', value=False)
53
+ t2iii_face_correction_last = gr.Checkbox(label='Face correction on last', value=False)
54
+ with gr.Row():
55
+ t2iii_model = gr.Dropdown(label="Model", choices=model_list, value="Same")
56
+ t2iii_sampler = gr.Dropdown(label="Sampler", choices=img2img_samplers_names, value="DPM++ 2M")
57
+ # with gr.Row():
58
+ # t2iii_override_s_noise = gr.Checkbox(label='Override sampler\'s noise for last pass', value=False)
59
+ # t2iii_sampler_noise = gr.Slider(minimum=0, maximum=1, step=0.5, label='Sampler\'s noise for last pass', value=0)
60
+ with gr.Row():
61
+ t2iii_clip = gr.Slider(minimum=0, maximum=12, step=1, label='change clip for img2img (0 = disabled)', value=0)
62
+ t2iii_noise = gr.Slider(minimum=0, maximum=0.005, step=0.0001, label='Add noise before img2img ', value=0)
63
+ with gr.Row():
64
+ t2iii_patch_square_size = gr.Slider(minimum=64, maximum=2048, step=64, label='Patch upscale square size', value=512)
65
+ t2iii_patch_padding = gr.Slider(minimum=0, maximum=512, step=8, label='Patch upscale padding', value=128)
66
+ with gr.Row():
67
+ t2iii_patch_border = gr.Slider(minimum=0, maximum=64, step=1, label='Patch upscale mask inner border', value=8)
68
+ t2iii_patch_mask_blur = gr.Slider(minimum=0, maximum=64 , step=1, label='Patch upscale mask blur', value=4)
69
+ with gr.Row():
70
+ t2iii_upscale_x = gr.Slider(minimum=64, maximum=16384, step=64, label='img2img width (64 = no rescale) ', value=768)
71
+ t2iii_upscale_y = gr.Slider(minimum=64, maximum=16384, step=64, label='img2img height (64 = no rescale) ', value=960)
72
+ t2iii_2x_last = gr.Slider(minimum=1, maximum=4, step=0.1, label='resize time x size for last pass', value=1)
73
+ with gr.Row():
74
+ t2iii_replace_prompt = gr.Checkbox(label='Replace the prompt', value=False)
75
+ t2iii_replace_negative_prompt = gr.Checkbox(label='Replace the negative prompt', value=False)
76
+ add_to_prompt = gr.Textbox(label="Add to prompt", lines=2, max_lines=2000)
77
+ add_to_negative_prompt = gr.Textbox(label="Add to prompt", lines=2, max_lines=2000)
78
+
79
+ return [t2iii_reprocess,t2iii_steps,t2iii_cfg_scale,t2iii_seed_shift,t2iii_denoising_strength,t2iii_patch_upscale,t2iii_patch_shift,t2iii_2x_last,t2iii_save_first,t2iii_only_last,t2iii_face_correction,t2iii_face_correction_last, t2iii_model, t2iii_sampler,t2iii_clip,t2iii_noise,t2iii_patch_padding,t2iii_patch_square_size,t2iii_patch_border,t2iii_patch_mask_blur,t2iii_patch_end_denoising,t2iii_upscale_x,t2iii_upscale_y,add_to_prompt,add_to_negative_prompt,t2iii_replace_prompt,t2iii_replace_negative_prompt,t2iii_cfg_scale_end]
80
+ def run(self,p,t2iii_reprocess,t2iii_steps,t2iii_cfg_scale,t2iii_seed_shift,t2iii_denoising_strength,t2iii_patch_upscale,t2iii_patch_shift,t2iii_2x_last,t2iii_save_first,t2iii_only_last,t2iii_face_correction,t2iii_face_correction_last, t2iii_model, t2iii_sampler,t2iii_clip,t2iii_noise,t2iii_patch_padding,t2iii_patch_square_size,t2iii_patch_border,t2iii_patch_mask_blur,t2iii_patch_end_denoising,t2iii_upscale_x,t2iii_upscale_y,add_to_prompt,add_to_negative_prompt,t2iii_replace_prompt,t2iii_replace_negative_prompt,t2iii_cfg_scale_end):
81
+ def add_noise_to_image(img,seed,t2iii_noise):
82
+ img = np.array(img)
83
+ img = random_noise(img, mode='gaussian', seed=proc.seed, clip=True, var=t2iii_noise)
84
+ img = np.array(255*img, dtype = 'uint8')
85
+ img = Image.fromarray(np.array(img))
86
+ return img
87
+ def create_mask(size, border_width):
88
+ im = Image.new('RGB', (size, size), color='white')
89
+ draw = ImageDraw.Draw(im)
90
+ draw.rectangle((0, 0, size, size), outline='black', width=border_width)
91
+ return im
92
+ def clean_model_name(model_name):
93
+ if "[" in model_name:
94
+ model_name = model_name.split(" ")[-2]
95
+ return model_name
96
+ def get_current_model_name():
97
+ return clean_model_name(shared.opts.sd_model_checkpoint)
98
+ def is_model_loaded(wanted):
99
+ return wanted == get_current_model_name()
100
+
101
+ img2img_samplers_names = [s.name for s in sd_samplers.samplers_for_img2img]
102
+ img2img_sampler_index = [i for i in range(len(img2img_samplers_names)) if img2img_samplers_names[i] == t2iii_sampler][0]
103
+
104
+
105
+
106
+ # models paths
107
+ model_dir = "Stable-diffusion"
108
+ model_path = os.path.abspath(os.path.join(paths.models_path, model_dir))
109
+ initial_model = get_current_model_name()
110
+ initial_model_path = os.path.abspath(os.path.join(model_path,initial_model))
111
+
112
+ secondary_model_name = clean_model_name(t2iii_model)
113
+ secondary_model_path = ""
114
+ if t2iii_model != "Same":
115
+ secondary_model_name = clean_model_name(t2iii_model)
116
+ secondary_model_path = os.path.abspath(os.path.join(model_path,secondary_model_name))
117
+
118
+
119
+
120
+ if p.seed == -1: p.seed = randint(0,1000000000)
121
+
122
+ initial_CLIP = opts.data["CLIP_stop_at_last_layers"]
123
+ p.do_not_save_samples = not t2iii_save_first
124
+ initial_prompt = deepcopy(p.prompt)
125
+ initial_negative_prompt = deepcopy(p.negative_prompt)
126
+
127
+ n_iter=p.n_iter
128
+ for j in range(n_iter):
129
+
130
+ if t2iii_model != "Same":
131
+ if not is_model_loaded(initial_model):
132
+ print()
133
+ sd_models.load_model(sd_models.CheckpointInfo(initial_model_path))
134
+
135
+ p.n_iter=1
136
+ if t2iii_clip > 0:
137
+ opts.data["CLIP_stop_at_last_layers"] = initial_CLIP
138
+
139
+ p.prompt = initial_prompt
140
+ p.negative_prompt = initial_negative_prompt
141
+
142
+ # PROCESS IMAGE
143
+ proc = process_images(p)
144
+
145
+ if add_to_prompt != "" or t2iii_replace_prompt:
146
+ if t2iii_replace_prompt:
147
+ p.prompt = add_to_prompt
148
+ else:
149
+ p.prompt = initial_prompt+add_to_prompt
150
+
151
+ if add_to_negative_prompt != "" or t2iii_replace_negative_prompt:
152
+ if t2iii_replace_negative_prompt:
153
+ p.negative_prompt = add_to_negative_prompt
154
+ else:
155
+ p.negative_prompt = initial_negative_prompt+add_to_negative_prompt
156
+
157
+ basename = ""
158
+ extra_gen_parms = {
159
+ 'Initial steps':p.steps,
160
+ 'Initial CFG scale':p.cfg_scale,
161
+ "Initial seed": p.seed,
162
+ 'Initial sampler': p.sampler_name,
163
+ 'Reprocess amount':t2iii_reprocess
164
+ }
165
+ for i in range(t2iii_reprocess):
166
+ if t2iii_upscale_x > 64:
167
+ upscale_x = t2iii_upscale_x
168
+ else:
169
+ upscale_x = p.width
170
+ if t2iii_upscale_y > 64:
171
+ upscale_y = t2iii_upscale_y
172
+ else:
173
+ upscale_y = p.height
174
+ if t2iii_2x_last > 1 and i+1 == t2iii_reprocess:
175
+ upscale_x = int(upscale_x*t2iii_2x_last)
176
+ upscale_y = int(upscale_y*t2iii_2x_last)
177
+ if t2iii_seed_shift == -1:
178
+ reprocess_seed = randint(0,999999999)
179
+ else:
180
+ reprocess_seed = p.seed+t2iii_seed_shift*(i+1)
181
+ if t2iii_clip > 0:
182
+ opts.data["CLIP_stop_at_last_layers"] = t2iii_clip
183
+
184
+ if state.interrupted:
185
+ if t2iii_clip > 0:
186
+ opts.data["CLIP_stop_at_last_layers"] = initial_CLIP
187
+ break
188
+
189
+ if t2iii_model != "Same":
190
+ if not is_model_loaded(secondary_model_name):
191
+ print()
192
+ sd_models.load_model(sd_models.CheckpointInfo(secondary_model_path))
193
+
194
+ if i == 0:
195
+ proc_temp = proc
196
+ else:
197
+ proc_temp = proc2
198
+ if t2iii_noise > 0 :
199
+ proc_temp.images[0] = add_noise_to_image(proc_temp.images[0],p.seed,t2iii_noise)
200
+
201
+ img2img_processing = StableDiffusionProcessingImg2Img(
202
+ init_images=proc_temp.images,
203
+ resize_mode=0,
204
+ denoising_strength=remap_range(i,0,t2iii_reprocess-1,t2iii_denoising_strength,t2iii_patch_end_denoising) if t2iii_patch_end_denoising > 0 else t2iii_denoising_strength,
205
+ mask=None,
206
+ mask_blur=t2iii_patch_mask_blur,
207
+ inpainting_fill=1,
208
+ inpaint_full_res=False,
209
+ inpaint_full_res_padding=0,
210
+ inpainting_mask_invert=0,
211
+ sd_model=p.sd_model,
212
+ outpath_samples=p.outpath_samples,
213
+ outpath_grids=p.outpath_grids,
214
+ prompt=p.prompt,
215
+ styles=p.styles,
216
+ seed=reprocess_seed,
217
+ subseed=proc_temp.subseed,
218
+ subseed_strength=p.subseed_strength,
219
+ seed_resize_from_h=p.seed_resize_from_h,
220
+ seed_resize_from_w=p.seed_resize_from_w,
221
+ #seed_enable_extras=p.seed_enable_extras,
222
+ sampler_name=t2iii_sampler,
223
+ #sampler_index=img2img_sampler_index,
224
+ batch_size=p.batch_size,
225
+ n_iter=p.n_iter,
226
+ steps=t2iii_steps,
227
+ cfg_scale=remap_range(i,0,t2iii_reprocess-1,t2iii_cfg_scale,t2iii_cfg_scale_end) if t2iii_cfg_scale_end > 0 else t2iii_cfg_scale,
228
+ width=upscale_x,
229
+ height=upscale_y,
230
+ restore_faces=(t2iii_face_correction or (t2iii_face_correction_last and t2iii_reprocess-1 == i)) and not (t2iii_reprocess-1 == i and not t2iii_face_correction_last),
231
+ tiling=p.tiling,
232
+ do_not_save_samples=True,
233
+ do_not_save_grid=p.do_not_save_grid,
234
+ extra_generation_params=extra_gen_parms,
235
+ overlay_images=p.overlay_images,
236
+ negative_prompt=p.negative_prompt,
237
+ eta=p.eta
238
+ )
239
+ # if t2iii_reprocess-1 == i and t2iii_override_s_noise:
240
+ # img2img_processing.s_noise = t2iii_sampler_noise
241
+ if not t2iii_patch_upscale:
242
+ proc2 = process_images(img2img_processing)
243
+ if ((t2iii_only_last and t2iii_reprocess-1 == i) or not t2iii_only_last):
244
+ images.save_image(proc2.images[0], p.outpath_samples, "", proc_temp.seed, proc2.prompt, opts.samples_format, info=proc_temp.info, p=p)
245
+ else:
246
+ proc_temp.images[0] = proc_temp.images[0].resize((upscale_x, upscale_y), Image.Resampling.LANCZOS)
247
+ width_for_patch, height_for_patch = proc_temp.images[0].size
248
+ real_square_size = int(t2iii_patch_square_size)
249
+ overlap_pass = int(real_square_size/t2iii_reprocess)*i
250
+ patch_seed = reprocess_seed
251
+ for x in range(0, width_for_patch+overlap_pass if i>0 and t2iii_patch_shift else width_for_patch, real_square_size):
252
+ for y in range(0, height_for_patch+overlap_pass if i>0 and t2iii_patch_shift else height_for_patch, real_square_size):
253
+ if (
254
+ x-overlap_pass > width_for_patch or
255
+ y-overlap_pass > height_for_patch or
256
+ x+real_square_size-overlap_pass < 0 or
257
+ y+real_square_size-overlap_pass < 0
258
+ ): continue
259
+ if t2iii_seed_shift == -1:
260
+ patch_seed = randint(0,999999999)
261
+ else:
262
+ patch_seed = patch_seed+t2iii_seed_shift
263
+ patch = proc_temp.images[0].crop((x-t2iii_patch_padding-overlap_pass,
264
+ y-t2iii_patch_padding-overlap_pass,
265
+ x + real_square_size + t2iii_patch_padding-overlap_pass,
266
+ y + real_square_size + t2iii_patch_padding-overlap_pass))
267
+ img2img_processing.init_images = [patch]
268
+ img2img_processing.do_not_save_samples = True
269
+ img2img_processing.width = patch.size[0]
270
+ img2img_processing.height = patch.size[1]
271
+ img2img_processing.seed = patch_seed
272
+ mask = create_mask(patch.size[0],t2iii_patch_padding+t2iii_patch_border)
273
+ img2img_processing.image_mask = mask
274
+ proc_patch_temp = process_images(img2img_processing)
275
+ patch = proc_patch_temp.images[0]
276
+ patch = patch.crop((t2iii_patch_padding, t2iii_patch_padding, patch.size[0] - t2iii_patch_padding, patch.size[1] - t2iii_patch_padding))
277
+ proc_temp.images[0].paste(patch, (x-overlap_pass, y-overlap_pass))
278
+ proc2 = proc_patch_temp
279
+ proc2.images[0] = proc_temp.images[0]
280
+ images.save_image(proc2.images[0], p.outpath_samples, "", proc2.seed, proc2.prompt, opts.samples_format, info=proc2.info, p=p)
281
+
282
+
283
+ p.subseed = p.subseed + 1 if p.subseed_strength > 0 else p.subseed
284
+ p.seed = p.seed + 1 if p.subseed_strength == 0 else p.seed
285
+ if t2iii_model != "Same":
286
+ if not is_model_loaded(initial_model):
287
+ print()
288
+ sd_models.load_model(sd_models.CheckpointInfo(initial_model_path))
289
+ if t2iii_clip > 0:
290
+ opts.data["CLIP_stop_at_last_layers"] = initial_CLIP
291
+ return proc
scripts/UnsharpMask.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import modules.scripts as scripts
2
+ import gradio as gr
3
+ import os
4
+ from modules import images
5
+ from modules.processing import process_images, Processed
6
+ from modules.processing import Processed
7
+ from modules.shared import opts, cmd_opts, state
8
+
9
+ class Script(scripts.Script):
10
+
11
+ def title(self):
12
+ return "Unsharp Mask"
13
+
14
+ #only show in img2img tab
15
+
16
+ def show(self, is_img2img):
17
+ return is_img2img
18
+
19
+ #Gradio interface parameters
20
+
21
+ def ui(self, is_img2img):
22
+ save = gr.Checkbox(False, label="Save original and effect")
23
+ umradius = gr.Slider(minimum=0.0, maximum=1000.0, step=1, value=0, label="Radius")
24
+ umpercent = gr.Slider(minimum=0.0, maximum=500.0, step=1, value=0, label="Percent")
25
+ umthreshold = gr.Slider(minimum=0.0, maximum=255.0, step=1, value=0, label="Threshold")
26
+ return [save, umradius, umpercent, umthreshold]
27
+
28
+ #processed object
29
+ def run(self, p, save, umradius, umpercent, umthreshold):
30
+
31
+ #perform unsharp mask operation
32
+ def unsharp_mask(im, umradius, umpercent, umthreshold):
33
+ from PIL import Image, ImageFilter
34
+ raf = im
35
+ raf = raf.filter(filter=ImageFilter.UnsharpMask(radius = umradius, percent = umpercent, threshold = umthreshold))
36
+ return raf
37
+
38
+ # If save is off, save with prefix filename
39
+ basename = ""
40
+ if(save):
41
+ basename += "unsharpmask_"
42
+ else:
43
+ p.do_not_save_samples = True
44
+
45
+ #process images
46
+ proc = process_images(p)
47
+
48
+ for i in range(len(proc.images)):
49
+
50
+ proc.images[i] = unsharp_mask(proc.images[i], umradius, umpercent, umthreshold)
51
+ images.save_image(proc.images[i], p.outpath_samples, basename,
52
+ proc.seed + i, proc.prompt, opts.samples_format, info= proc.info, p=p)
53
+
54
+ return proc
scripts/__pycache__/CFG Auto.cpython-310.pyc ADDED
Binary file (10.1 kB). View file
 
scripts/__pycache__/CFG Schedule.cpython-310.pyc ADDED
Binary file (10.1 kB). View file
 
scripts/__pycache__/ContorlNet_I2I_sequence_toyxyz_V2.cpython-310.pyc ADDED
Binary file (9.42 kB). View file
 
scripts/__pycache__/LoopbackWave.cpython-310.pyc ADDED
Binary file (8.7 kB). View file
 
scripts/__pycache__/Txt2img2img2img.cpython-310.pyc ADDED
Binary file (10 kB). View file
 
scripts/__pycache__/UnsharpMask.cpython-310.pyc ADDED
Binary file (1.99 kB). View file
 
scripts/__pycache__/advanced_loopback.cpython-310.pyc ADDED
Binary file (7.94 kB). View file
 
scripts/__pycache__/advanced_loopback_blend.cpython-310.pyc ADDED
Binary file (7.84 kB). View file
 
scripts/__pycache__/advanced_seed_blending.cpython-310.pyc ADDED
Binary file (1.97 kB). View file
 
scripts/__pycache__/alternate_sampler_noise_schedules.cpython-310.pyc ADDED
Binary file (2.27 kB). View file
 
scripts/__pycache__/block_lora.cpython-310.pyc ADDED
Binary file (6.85 kB). View file
 
scripts/__pycache__/cache_cleaner(from sd-webui-gradio-cleaner).cpython-310.pyc ADDED
Binary file (1.1 kB). View file
 
scripts/__pycache__/custom_code-Copy1.cpython-310.pyc ADDED
Binary file (2.74 kB). View file
 
scripts/__pycache__/custom_code.cpython-310.pyc ADDED
Binary file (2.73 kB). View file
 
scripts/__pycache__/epiCFG_schedule_type.cpython-310.pyc ADDED
Binary file (8.51 kB). View file
 
scripts/__pycache__/external_masking.cpython-310.pyc ADDED
Binary file (6.59 kB). View file
 
scripts/__pycache__/img2imgalt-Copy1.cpython-310.pyc ADDED
Binary file (6.38 kB). View file
 
scripts/__pycache__/img2imgalt.cpython-310.pyc ADDED
Binary file (6.38 kB). View file
 
scripts/__pycache__/loopback-Copy1.cpython-310.pyc ADDED
Binary file (3.57 kB). View file
 
scripts/__pycache__/loopback.cpython-310.pyc ADDED
Binary file (3.57 kB). View file
 
scripts/__pycache__/loopback_for_chain.cpython-310.pyc ADDED
Binary file (3.35 kB). View file
 
scripts/__pycache__/outpainting_mk_2-Copy1.cpython-310.pyc ADDED
Binary file (8.31 kB). View file
 
scripts/__pycache__/outpainting_mk_2.cpython-310.pyc ADDED
Binary file (8.31 kB). View file
 
scripts/__pycache__/poor_mans_outpainting-Copy1.cpython-310.pyc ADDED
Binary file (4.12 kB). View file
 
scripts/__pycache__/poor_mans_outpainting.cpython-310.pyc ADDED
Binary file (4.12 kB). View file
 
scripts/__pycache__/postprocessing_codeformer-Copy1.cpython-310.pyc ADDED
Binary file (1.71 kB). View file
 
scripts/__pycache__/postprocessing_codeformer.cpython-310.pyc ADDED
Binary file (1.71 kB). View file
 
scripts/__pycache__/postprocessing_gfpgan-Copy1.cpython-310.pyc ADDED
Binary file (1.44 kB). View file
 
scripts/__pycache__/postprocessing_gfpgan.cpython-310.pyc ADDED
Binary file (1.43 kB). View file
 
scripts/__pycache__/postprocessing_upscale-Copy1.cpython-310.pyc ADDED
Binary file (8.63 kB). View file
 
scripts/__pycache__/postprocessing_upscale.cpython-310.pyc ADDED
Binary file (8.62 kB). View file
 
scripts/__pycache__/process_png_metadata.cpython-310.pyc ADDED
Binary file (8.3 kB). View file
 
scripts/__pycache__/prompt_matrix-Copy1.cpython-310.pyc ADDED
Binary file (4.21 kB). View file
 
scripts/__pycache__/prompt_matrix.cpython-310.pyc ADDED
Binary file (4.2 kB). View file
 
scripts/__pycache__/prompter.cpython-310.pyc ADDED
Binary file (17.5 kB). View file
 
scripts/__pycache__/prompts_from_file-Copy1.cpython-310.pyc ADDED
Binary file (5.59 kB). View file
 
scripts/__pycache__/prompts_from_file.cpython-310.pyc ADDED
Binary file (5.59 kB). View file
 
scripts/__pycache__/prompts_from_file_2.cpython-310.pyc ADDED
Binary file (9.19 kB). View file
 
scripts/__pycache__/quick_upscale.cpython-310.pyc ADDED
Binary file (1.84 kB). View file
 
scripts/__pycache__/run_n_times.cpython-310.pyc ADDED
Binary file (1.02 kB). View file
 
scripts/__pycache__/save-steps.cpython-310.pyc ADDED
Binary file (1.56 kB). View file
 
scripts/__pycache__/sd_upscale-Copy1.cpython-310.pyc ADDED
Binary file (3.59 kB). View file
 
scripts/__pycache__/sd_upscale.cpython-310.pyc ADDED
Binary file (3.58 kB). View file
 
scripts/__pycache__/size_travel.cpython-310.pyc ADDED
Binary file (10.7 kB). View file