import gradio as gr import torch import math import traceback from modules import shared try: from modules.models.diffusion import uni_pc except Exception as e: from modules import unipc as uni_pc ######################### UniPC Implementation logic ######################### # The majority of this is straight from modules.models/diffusion/uni_pc/sampler.py # Unfortunately that's not an easy middle-injection point, so, just copypasta'd it all # It's like they designed it to intentionally be as difficult to inject into as possible :( # (It has hooks but not in useful locations) # I stripped the original comments for brevity. # Some never-used code (scheduler modes, noise modes, guidance modes) have been removed as well for brevity. # The actual impl comes down to just the last line in particular, and the `before_sample` insert to track step count. class CustomUniPCSampler(uni_pc.sampler.UniPCSampler): def __init__(self, model, **kwargs): super().__init__(model, *kwargs) @torch.no_grad() def sample(self, S, batch_size, shape, conditioning=None, callback=None, normals_sequence=None, img_callback=None, quantize_x0=False, eta=0., mask=None, x0=None, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, verbose=True, x_T=None, log_every_t=100, unconditional_guidance_scale=1., unconditional_conditioning=None, **kwargs): if conditioning is not None: if isinstance(conditioning, dict): ctmp = conditioning[list(conditioning.keys())[0]] while isinstance(ctmp, list): ctmp = ctmp[0] cbs = ctmp.shape[0] if cbs != batch_size: print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") elif isinstance(conditioning, list): for ctmp in conditioning: if ctmp.shape[0] != batch_size: print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") else: if conditioning.shape[0] != batch_size: print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") C, H, W = shape size = (batch_size, C, H, W) device = self.model.betas.device if x_T is None: img = torch.randn(size, device=device) else: img = x_T ns = uni_pc.uni_pc.NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod) model_type = "v" if self.model.parameterization == "v" else "noise" model_fn = CustomUniPC_model_wrapper(lambda x, t, c: self.model.apply_model(x, t, c), ns, model_type=model_type, guidance_scale=unconditional_guidance_scale, dt_data=self.main_class) self.main_class.step = 0 def before_sample(x, t, cond, uncond): self.main_class.step += 1 return self.before_sample(x, t, cond, uncond) uni_pc_inst = uni_pc.uni_pc.UniPC(model_fn, ns, predict_x0=True, thresholding=False, variant=shared.opts.uni_pc_variant, condition=conditioning, unconditional_condition=unconditional_conditioning, before_sample=before_sample, after_sample=self.after_sample, after_update=self.after_update) x = uni_pc_inst.sample(img, steps=S, skip_type=shared.opts.uni_pc_skip_type, method="multistep", order=shared.opts.uni_pc_order, lower_order_final=shared.opts.uni_pc_lower_order_final) return x.to(device), None def CustomUniPC_model_wrapper(model, noise_schedule, model_type="noise", model_kwargs={}, guidance_scale=1.0, dt_data=None): def expand_dims(v, dims): return v[(...,) + (None,)*(dims - 1)] def get_model_input_time(t_continuous): return (t_continuous - 1. / noise_schedule.total_N) * 1000. def noise_pred_fn(x, t_continuous, cond=None): if t_continuous.reshape((-1,)).shape[0] == 1: t_continuous = t_continuous.expand((x.shape[0])) t_input = get_model_input_time(t_continuous) if cond is None: output = model(x, t_input, None, **model_kwargs) else: output = model(x, t_input, cond, **model_kwargs) if model_type == "noise": return output elif model_type == "v": alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) dims = x.dim() return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x def model_fn(x, t_continuous, condition, unconditional_condition): if t_continuous.reshape((-1,)).shape[0] == 1: t_continuous = t_continuous.expand((x.shape[0])) if guidance_scale == 1. or unconditional_condition is None: return noise_pred_fn(x, t_continuous, cond=condition) else: x_in = torch.cat([x] * 2) t_in = torch.cat([t_continuous] * 2) if isinstance(condition, dict): assert isinstance(unconditional_condition, dict) c_in = dict() for k in condition: if isinstance(condition[k], list): c_in[k] = [torch.cat([ unconditional_condition[k][i], condition[k][i]]) for i in range(len(condition[k]))] else: c_in[k] = torch.cat([ unconditional_condition[k], condition[k]]) elif isinstance(condition, list): c_in = list() assert isinstance(unconditional_condition, list) for i in range(len(condition)): c_in.append(torch.cat([unconditional_condition[i], condition[i]])) else: c_in = torch.cat([unconditional_condition, condition]) noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) #return noise_uncond + guidance_scale * (noise - noise_uncond) return dt_data.dynthresh(noise, noise_uncond, guidance_scale, None) return model_fn