import torch import tqdm import k_diffusion.sampling from modules import sd_samplers_common, sd_samplers_kdiffusion, sd_samplers from tqdm.auto import trange, tqdm from k_diffusion import utils import math NAME = 'Euler_Smea' ALIAS = 'euler_smea' def overall_sampling_step(x, model, dt, sigma_hat, **extra_args): # 先判断输入的形状类型 original_shape = x.shape # 计算m和n batch_size, channels, m, n = original_shape[0], original_shape[1], original_shape[2] // 2, original_shape[3] // 2 extra_row = x.shape[2] % 2 == 1 extra_col = x.shape[3] % 2 == 1 # 提取多余的行和列 if extra_row: extra_row_content = x[:, :, -1:, :] x = x[:, :, :-1, :] # print("成功提取多余行") # print(x0.shape) if extra_col: extra_col_content = x[:, :, :, -1:] x = x[:, :, :, :-1] # print("成功提取多余列") # print(x0.shape) # 之前的处理逻辑 a_list = x.unfold(2, 2, 2).unfold(3, 2, 2).contiguous().view(batch_size, channels, m * n, 2, 2) c = a_list[:, :, :, 1, 1].view(batch_size, channels, m, n) denoised = model(c, sigma_hat * c.new_ones([c.shape[0]]), **extra_args) d = k_diffusion.sampling.to_d(c, sigma_hat, denoised) c = c + d * dt d_list = denoised.view(batch_size, channels, m * n, 1, 1) a_list[:, :, :, 1, 1] = d_list[:, :, :, 0, 0] x = a_list.view(batch_size, channels, m, n, 2, 2).permute(0, 1, 2, 4, 3, 5).reshape(batch_size, channels, 2 * m, 2 * n) # print("成功整体采样") # print(x1.shape) # 判断是否需要添加零行或零列 if extra_row or extra_col: x_expanded = torch.zeros(original_shape, dtype=x.dtype, device=x.device) x_expanded[:, :, :2 * m, :2 * n] = x if extra_row: x_expanded[:, :, -1:, :2 * n + 1] = extra_row_content if extra_col: x_expanded[:, :, :2 * m, -1:] = extra_col_content if extra_row and extra_col: x_expanded[:, :, -1:, -1:] = extra_col_content[:, :, -1:, :] x = x_expanded return x @torch.no_grad() def sample_euler_smea(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): # print(i) # i第一步为0 gamma = max(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. eps = torch.randn_like(x) * s_noise sigma_hat = sigmas[i] * (gamma + 1) # print(sigma_hat) dt = sigmas[i + 1] - sigma_hat if i // 2 == 1: x = overall_sampling_step(x, model, dt, sigma_hat, **extra_args) if gamma > 0: x = x - eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 denoised = model(x, sigma_hat * s_in, **extra_args) d = k_diffusion.sampling.to_d(x, sigma_hat, denoised) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) # Euler method x = x + d * dt return x if not NAME in [x.name for x in sd_samplers.all_samplers]: euler_smea_samplers = [(NAME, sample_euler_smea, [ALIAS], {})] samplers_data_euler_smea_samplers = [ sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: sd_samplers_kdiffusion.KDiffusionSampler(funcname, model), aliases, options) for label, funcname, aliases, options in euler_smea_samplers if callable(funcname) or hasattr(k_diffusion.sampling, funcname) ] sd_samplers.all_samplers += samplers_data_euler_smea_samplers sd_samplers.all_samplers_map = {x.name: x for x in sd_samplers.all_samplers} sd_samplers.set_samplers()