--- library_name: peft license: apache-2.0 base_model: llamafactory/tiny-random-Llama-3 tags: - axolotl - generated_from_trainer model-index: - name: b6618d56-6c88-4033-ade8-8135764c1751 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: llamafactory/tiny-random-Llama-3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 311330e8a1d55a86_train_data.json ds_type: json field: issue path: /workspace/input_data/311330e8a1d55a86_train_data.json type: completion debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: true fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: dimasik1987/b6618d56-6c88-4033-ade8-8135764c1751 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/311330e8a1d55a86_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 5 save_strategy: steps sequence_len: 2028 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b6618d56-6c88-4033-ade8-8135764c1751 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b6618d56-6c88-4033-ade8-8135764c1751 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# b6618d56-6c88-4033-ade8-8135764c1751 This model is a fine-tuned version of [llamafactory/tiny-random-Llama-3](https://huggingface.co/llamafactory/tiny-random-Llama-3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.7704 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.7756 | 0.0101 | 1 | 11.7756 | | 11.7731 | 0.0302 | 3 | 11.7755 | | 11.7782 | 0.0605 | 6 | 11.7751 | | 11.7727 | 0.0907 | 9 | 11.7742 | | 11.7804 | 0.1209 | 12 | 11.7731 | | 11.7798 | 0.1511 | 15 | 11.7719 | | 11.7758 | 0.1814 | 18 | 11.7710 | | 11.7673 | 0.2116 | 21 | 11.7706 | | 11.7682 | 0.2418 | 24 | 11.7704 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1