--- library_name: peft license: apache-2.0 base_model: TinyLlama/TinyLlama_v1.1 tags: - axolotl - generated_from_trainer model-index: - name: 38a6c13c-3b6a-4554-b3c9-ca2ccb0d95ca results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: TinyLlama/TinyLlama_v1.1 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - bf4f7f7a6ea08749_train_data.json ds_type: json format: custom path: /workspace/input_data/bf4f7f7a6ea08749_train_data.json type: field_input: prompt_id field_instruction: text field_output: completion_a format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 3 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: dimasik2987/38a6c13c-3b6a-4554-b3c9-ca2ccb0d95ca hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_memory: 0: 70GiB max_steps: 25 micro_batch_size: 4 mlflow_experiment_name: /tmp/bf4f7f7a6ea08749_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 4056 special_tokens: pad_token: strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 38a6c13c-3b6a-4554-b3c9-ca2ccb0d95ca wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 38a6c13c-3b6a-4554-b3c9-ca2ccb0d95ca warmup_ratio: 0.05 weight_decay: 0.01 xformers_attention: null ```

# 38a6c13c-3b6a-4554-b3c9-ca2ccb0d95ca This model is a fine-tuned version of [TinyLlama/TinyLlama_v1.1](https://huggingface.co/TinyLlama/TinyLlama_v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3108 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6563 | 0.0033 | 1 | 1.7122 | | 1.4171 | 0.0098 | 3 | 1.6011 | | 1.2534 | 0.0197 | 6 | 1.4521 | | 1.21 | 0.0295 | 9 | 1.3822 | | 1.7432 | 0.0394 | 12 | 1.3498 | | 0.9953 | 0.0492 | 15 | 1.3323 | | 1.1401 | 0.0591 | 18 | 1.3210 | | 1.2508 | 0.0689 | 21 | 1.3149 | | 1.236 | 0.0788 | 24 | 1.3108 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1