dimasik2987 commited on
Commit
af32d5b
1 Parent(s): cbeb311

End of training

Browse files
Files changed (2) hide show
  1. README.md +159 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama3
4
+ base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 814f19b2-e567-48bd-b878-462707019cfe
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B
23
+ bf16: auto
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - 1b9657ed494e6d8c_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/1b9657ed494e6d8c_train_data.json
32
+ type:
33
+ field_instruction: tokens
34
+ field_output: tags_skill
35
+ format: '{instruction}'
36
+ no_input_format: '{instruction}'
37
+ system_format: '{system}'
38
+ system_prompt: ''
39
+ debug: null
40
+ deepspeed: null
41
+ early_stopping_patience: null
42
+ eval_max_new_tokens: 128
43
+ eval_steps: 25
44
+ eval_table_size: null
45
+ flash_attention: false
46
+ fp16: null
47
+ fsdp: null
48
+ fsdp_config: null
49
+ gradient_accumulation_steps: 8
50
+ gradient_checkpointing: true
51
+ gradient_clipping: 1.0
52
+ group_by_length: true
53
+ hub_model_id: dimasik2987/814f19b2-e567-48bd-b878-462707019cfe
54
+ hub_repo: null
55
+ hub_strategy: checkpoint
56
+ hub_token: null
57
+ learning_rate: 0.0001
58
+ load_in_4bit: false
59
+ load_in_8bit: false
60
+ local_rank: null
61
+ logging_steps: 1
62
+ lora_alpha: 64
63
+ lora_dropout: 0.05
64
+ lora_fan_in_fan_out: null
65
+ lora_model_dir: null
66
+ lora_r: 32
67
+ lora_target_linear: true
68
+ lr_scheduler: cosine
69
+ max_memory:
70
+ 0: 74GiB
71
+ max_steps: 75
72
+ micro_batch_size: 2
73
+ mlflow_experiment_name: /tmp/1b9657ed494e6d8c_train_data.json
74
+ model_type: AutoModelForCausalLM
75
+ num_epochs: 3
76
+ optim_args:
77
+ adam_beta1: 0.9
78
+ adam_beta2: 0.95
79
+ adam_epsilon: 1e-5
80
+ optimizer: adamw_torch
81
+ output_dir: miner_id_24
82
+ pad_to_sequence_len: true
83
+ resume_from_checkpoint: null
84
+ s2_attention: null
85
+ sample_packing: false
86
+ save_steps: 25
87
+ save_strategy: steps
88
+ sequence_len: 2048
89
+ strict: false
90
+ tf32: false
91
+ tokenizer_type: AutoTokenizer
92
+ train_on_inputs: false
93
+ trust_remote_code: true
94
+ val_set_size: 0.05
95
+ wandb_entity: null
96
+ wandb_mode: online
97
+ wandb_name: 814f19b2-e567-48bd-b878-462707019cfe
98
+ wandb_project: Gradients-On-Demand
99
+ wandb_run: your_name
100
+ wandb_runid: 814f19b2-e567-48bd-b878-462707019cfe
101
+ warmup_ratio: 0.05
102
+ weight_decay: 0.01
103
+ xformers_attention: true
104
+
105
+ ```
106
+
107
+ </details><br>
108
+
109
+ # 814f19b2-e567-48bd-b878-462707019cfe
110
+
111
+ This model is a fine-tuned version of [MLP-KTLim/llama-3-Korean-Bllossom-8B](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B) on the None dataset.
112
+ It achieves the following results on the evaluation set:
113
+ - Loss: 0.1113
114
+
115
+ ## Model description
116
+
117
+ More information needed
118
+
119
+ ## Intended uses & limitations
120
+
121
+ More information needed
122
+
123
+ ## Training and evaluation data
124
+
125
+ More information needed
126
+
127
+ ## Training procedure
128
+
129
+ ### Training hyperparameters
130
+
131
+ The following hyperparameters were used during training:
132
+ - learning_rate: 0.0001
133
+ - train_batch_size: 2
134
+ - eval_batch_size: 2
135
+ - seed: 42
136
+ - gradient_accumulation_steps: 8
137
+ - total_train_batch_size: 16
138
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
139
+ - lr_scheduler_type: cosine
140
+ - lr_scheduler_warmup_steps: 3
141
+ - training_steps: 75
142
+
143
+ ### Training results
144
+
145
+ | Training Loss | Epoch | Step | Validation Loss |
146
+ |:-------------:|:------:|:----:|:---------------:|
147
+ | 0.2034 | 0.0015 | 1 | 2.5885 |
148
+ | 0.0293 | 0.0371 | 25 | 0.1056 |
149
+ | 0.2163 | 0.0742 | 50 | 0.1156 |
150
+ | 0.0288 | 0.1114 | 75 | 0.1113 |
151
+
152
+
153
+ ### Framework versions
154
+
155
+ - PEFT 0.13.2
156
+ - Transformers 4.46.0
157
+ - Pytorch 2.5.0+cu124
158
+ - Datasets 3.0.1
159
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa390c3c685177dba72cd5dd2741f0884532f73d606cfe0bd800ab64bfa7e136
3
+ size 335706186