--- library_name: transformers language: - hi license: apache-2.0 base_model: openai/whisper-medium tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Swahili Medium results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: sw split: None args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 25.261512288203786 --- # Whisper Swahili Medium This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3519 - Wer: 25.2615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.3595 | 0.4342 | 1000 | 0.4586 | 31.5976 | | 0.3001 | 0.8684 | 2000 | 0.3794 | 27.8295 | | 0.1451 | 1.3026 | 3000 | 0.3701 | 26.1972 | | 0.1469 | 1.7369 | 4000 | 0.3519 | 25.2615 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.1.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0