plaguss HF staff commited on
Commit
2b28e0c
1 Parent(s): 10dbf49

Model save

Browse files
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: teknium/OpenHermes-2.5-Mistral-7B
4
+ tags:
5
+ - trl
6
+ - sft
7
+ - generated_from_trainer
8
+ datasets:
9
+ - generator
10
+ model-index:
11
+ - name: criticon-sft-v0.1
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # criticon-sft-v0.1
19
+
20
+ This model is a fine-tuned version of [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) on the generator dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.4668
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-06
42
+ - train_batch_size: 8
43
+ - eval_batch_size: 8
44
+ - seed: 42
45
+ - distributed_type: multi-GPU
46
+ - num_devices: 4
47
+ - gradient_accumulation_steps: 2
48
+ - total_train_batch_size: 64
49
+ - total_eval_batch_size: 32
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: cosine
52
+ - lr_scheduler_warmup_ratio: 0.1
53
+ - num_epochs: 2
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss |
58
+ |:-------------:|:-----:|:----:|:---------------:|
59
+ | 0.6226 | 0.29 | 500 | 0.6215 |
60
+ | 0.5616 | 0.57 | 1000 | 0.5684 |
61
+ | 0.5384 | 0.86 | 1500 | 0.5288 |
62
+ | 0.4248 | 1.14 | 2000 | 0.5098 |
63
+ | 0.3969 | 1.43 | 2500 | 0.4809 |
64
+ | 0.3933 | 1.72 | 3000 | 0.4668 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.38.0
70
+ - Pytorch 2.1.1+cu121
71
+ - Datasets 2.16.1
72
+ - Tokenizers 0.15.2
all_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.0,
3
+ "train_loss": 0.5086251636130099,
4
+ "train_runtime": 42324.6962,
5
+ "train_samples_per_second": 5.284,
6
+ "train_steps_per_second": 0.083
7
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 32000,
5
+ "transformers_version": "4.38.0"
6
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e92aa6bb60d7c4ea4b84de47959d62c5f41085e787e86170b1e44ede1fa6d0ef
3
+ size 4943178720
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66dcd895122f931a00204a9950ddc8f12cff4b607286fe1b7f58de2eb50b241b
3
+ size 4999819336
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b6d55283ff869eb4ac7fc93d68a2bea908bf6190b940febbb38b8e258c5fa53
3
+ size 4540532728
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14483496960
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.0,
3
+ "train_loss": 0.5086251636130099,
4
+ "train_runtime": 42324.6962,
5
+ "train_samples_per_second": 5.284,
6
+ "train_steps_per_second": 0.083
7
+ }
trainer_state.json ADDED
@@ -0,0 +1,2528 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.9994277539341918,
5
+ "eval_steps": 500,
6
+ "global_step": 3494,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "grad_norm": 46.73702167943208,
14
+ "learning_rate": 1.4285714285714288e-08,
15
+ "loss": 1.4108,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.01,
20
+ "grad_norm": 44.025654647587054,
21
+ "learning_rate": 1.4285714285714287e-07,
22
+ "loss": 1.404,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.01,
27
+ "grad_norm": 17.050573864369657,
28
+ "learning_rate": 2.8571428571428575e-07,
29
+ "loss": 1.262,
30
+ "step": 20
31
+ },
32
+ {
33
+ "epoch": 0.02,
34
+ "grad_norm": 12.362997846073997,
35
+ "learning_rate": 4.285714285714286e-07,
36
+ "loss": 1.0064,
37
+ "step": 30
38
+ },
39
+ {
40
+ "epoch": 0.02,
41
+ "grad_norm": 4.544949126575649,
42
+ "learning_rate": 5.714285714285715e-07,
43
+ "loss": 0.8356,
44
+ "step": 40
45
+ },
46
+ {
47
+ "epoch": 0.03,
48
+ "grad_norm": 3.303210825544356,
49
+ "learning_rate": 7.142857142857143e-07,
50
+ "loss": 0.772,
51
+ "step": 50
52
+ },
53
+ {
54
+ "epoch": 0.03,
55
+ "grad_norm": 2.6886321352067735,
56
+ "learning_rate": 8.571428571428572e-07,
57
+ "loss": 0.768,
58
+ "step": 60
59
+ },
60
+ {
61
+ "epoch": 0.04,
62
+ "grad_norm": 2.528853230744217,
63
+ "learning_rate": 1.0000000000000002e-06,
64
+ "loss": 0.7464,
65
+ "step": 70
66
+ },
67
+ {
68
+ "epoch": 0.05,
69
+ "grad_norm": 2.4854198868922994,
70
+ "learning_rate": 1.142857142857143e-06,
71
+ "loss": 0.7499,
72
+ "step": 80
73
+ },
74
+ {
75
+ "epoch": 0.05,
76
+ "grad_norm": 2.5204846897703335,
77
+ "learning_rate": 1.2857142857142856e-06,
78
+ "loss": 0.7407,
79
+ "step": 90
80
+ },
81
+ {
82
+ "epoch": 0.06,
83
+ "grad_norm": 2.6727574539079075,
84
+ "learning_rate": 1.4285714285714286e-06,
85
+ "loss": 0.7418,
86
+ "step": 100
87
+ },
88
+ {
89
+ "epoch": 0.06,
90
+ "grad_norm": 2.4909264997558713,
91
+ "learning_rate": 1.5714285714285714e-06,
92
+ "loss": 0.7155,
93
+ "step": 110
94
+ },
95
+ {
96
+ "epoch": 0.07,
97
+ "grad_norm": 2.4511405269140574,
98
+ "learning_rate": 1.7142857142857145e-06,
99
+ "loss": 0.7188,
100
+ "step": 120
101
+ },
102
+ {
103
+ "epoch": 0.07,
104
+ "grad_norm": 2.29941417948333,
105
+ "learning_rate": 1.8571428571428573e-06,
106
+ "loss": 0.7025,
107
+ "step": 130
108
+ },
109
+ {
110
+ "epoch": 0.08,
111
+ "grad_norm": 2.25479052126887,
112
+ "learning_rate": 2.0000000000000003e-06,
113
+ "loss": 0.7147,
114
+ "step": 140
115
+ },
116
+ {
117
+ "epoch": 0.09,
118
+ "grad_norm": 2.259049566829717,
119
+ "learning_rate": 2.1428571428571427e-06,
120
+ "loss": 0.7054,
121
+ "step": 150
122
+ },
123
+ {
124
+ "epoch": 0.09,
125
+ "grad_norm": 2.360482364120735,
126
+ "learning_rate": 2.285714285714286e-06,
127
+ "loss": 0.7065,
128
+ "step": 160
129
+ },
130
+ {
131
+ "epoch": 0.1,
132
+ "grad_norm": 3.542698113557103,
133
+ "learning_rate": 2.428571428571429e-06,
134
+ "loss": 0.6936,
135
+ "step": 170
136
+ },
137
+ {
138
+ "epoch": 0.1,
139
+ "grad_norm": 2.5159436855022985,
140
+ "learning_rate": 2.571428571428571e-06,
141
+ "loss": 0.6988,
142
+ "step": 180
143
+ },
144
+ {
145
+ "epoch": 0.11,
146
+ "grad_norm": 2.2866610023159404,
147
+ "learning_rate": 2.7142857142857144e-06,
148
+ "loss": 0.6676,
149
+ "step": 190
150
+ },
151
+ {
152
+ "epoch": 0.11,
153
+ "grad_norm": 2.413352451235453,
154
+ "learning_rate": 2.8571428571428573e-06,
155
+ "loss": 0.6835,
156
+ "step": 200
157
+ },
158
+ {
159
+ "epoch": 0.12,
160
+ "grad_norm": 2.142867928366355,
161
+ "learning_rate": 3e-06,
162
+ "loss": 0.6748,
163
+ "step": 210
164
+ },
165
+ {
166
+ "epoch": 0.13,
167
+ "grad_norm": 2.2732969439494917,
168
+ "learning_rate": 3.142857142857143e-06,
169
+ "loss": 0.6766,
170
+ "step": 220
171
+ },
172
+ {
173
+ "epoch": 0.13,
174
+ "grad_norm": 2.363769090094736,
175
+ "learning_rate": 3.285714285714286e-06,
176
+ "loss": 0.6744,
177
+ "step": 230
178
+ },
179
+ {
180
+ "epoch": 0.14,
181
+ "grad_norm": 2.2070896050087927,
182
+ "learning_rate": 3.428571428571429e-06,
183
+ "loss": 0.6529,
184
+ "step": 240
185
+ },
186
+ {
187
+ "epoch": 0.14,
188
+ "grad_norm": 2.270856142543171,
189
+ "learning_rate": 3.5714285714285718e-06,
190
+ "loss": 0.6721,
191
+ "step": 250
192
+ },
193
+ {
194
+ "epoch": 0.15,
195
+ "grad_norm": 2.458909086153812,
196
+ "learning_rate": 3.7142857142857146e-06,
197
+ "loss": 0.6549,
198
+ "step": 260
199
+ },
200
+ {
201
+ "epoch": 0.15,
202
+ "grad_norm": 2.38712999789014,
203
+ "learning_rate": 3.857142857142858e-06,
204
+ "loss": 0.6592,
205
+ "step": 270
206
+ },
207
+ {
208
+ "epoch": 0.16,
209
+ "grad_norm": 2.1901720461163383,
210
+ "learning_rate": 4.000000000000001e-06,
211
+ "loss": 0.6543,
212
+ "step": 280
213
+ },
214
+ {
215
+ "epoch": 0.17,
216
+ "grad_norm": 2.448025889828106,
217
+ "learning_rate": 4.1428571428571435e-06,
218
+ "loss": 0.6633,
219
+ "step": 290
220
+ },
221
+ {
222
+ "epoch": 0.17,
223
+ "grad_norm": 2.3714159790058376,
224
+ "learning_rate": 4.2857142857142855e-06,
225
+ "loss": 0.6751,
226
+ "step": 300
227
+ },
228
+ {
229
+ "epoch": 0.18,
230
+ "grad_norm": 2.286975644624705,
231
+ "learning_rate": 4.428571428571429e-06,
232
+ "loss": 0.653,
233
+ "step": 310
234
+ },
235
+ {
236
+ "epoch": 0.18,
237
+ "grad_norm": 2.2971551515931705,
238
+ "learning_rate": 4.571428571428572e-06,
239
+ "loss": 0.6566,
240
+ "step": 320
241
+ },
242
+ {
243
+ "epoch": 0.19,
244
+ "grad_norm": 2.2863181903895944,
245
+ "learning_rate": 4.714285714285715e-06,
246
+ "loss": 0.651,
247
+ "step": 330
248
+ },
249
+ {
250
+ "epoch": 0.19,
251
+ "grad_norm": 2.1454553859203016,
252
+ "learning_rate": 4.857142857142858e-06,
253
+ "loss": 0.6449,
254
+ "step": 340
255
+ },
256
+ {
257
+ "epoch": 0.2,
258
+ "grad_norm": 2.3164450357661655,
259
+ "learning_rate": 5e-06,
260
+ "loss": 0.64,
261
+ "step": 350
262
+ },
263
+ {
264
+ "epoch": 0.21,
265
+ "grad_norm": 2.3977191539499514,
266
+ "learning_rate": 4.9998751923890465e-06,
267
+ "loss": 0.6537,
268
+ "step": 360
269
+ },
270
+ {
271
+ "epoch": 0.21,
272
+ "grad_norm": 2.0695920697937074,
273
+ "learning_rate": 4.999500782017737e-06,
274
+ "loss": 0.6318,
275
+ "step": 370
276
+ },
277
+ {
278
+ "epoch": 0.22,
279
+ "grad_norm": 2.191828287138372,
280
+ "learning_rate": 4.9988768062694815e-06,
281
+ "loss": 0.6372,
282
+ "step": 380
283
+ },
284
+ {
285
+ "epoch": 0.22,
286
+ "grad_norm": 2.216026606359093,
287
+ "learning_rate": 4.99800332744582e-06,
288
+ "loss": 0.6308,
289
+ "step": 390
290
+ },
291
+ {
292
+ "epoch": 0.23,
293
+ "grad_norm": 2.316444311670876,
294
+ "learning_rate": 4.996880432760195e-06,
295
+ "loss": 0.6345,
296
+ "step": 400
297
+ },
298
+ {
299
+ "epoch": 0.23,
300
+ "grad_norm": 2.120057918512993,
301
+ "learning_rate": 4.99550823432925e-06,
302
+ "loss": 0.632,
303
+ "step": 410
304
+ },
305
+ {
306
+ "epoch": 0.24,
307
+ "grad_norm": 2.226615533896781,
308
+ "learning_rate": 4.993886869161631e-06,
309
+ "loss": 0.6347,
310
+ "step": 420
311
+ },
312
+ {
313
+ "epoch": 0.25,
314
+ "grad_norm": 2.221954699719473,
315
+ "learning_rate": 4.992016499144309e-06,
316
+ "loss": 0.6473,
317
+ "step": 430
318
+ },
319
+ {
320
+ "epoch": 0.25,
321
+ "grad_norm": 2.0658073751369943,
322
+ "learning_rate": 4.9898973110264126e-06,
323
+ "loss": 0.61,
324
+ "step": 440
325
+ },
326
+ {
327
+ "epoch": 0.26,
328
+ "grad_norm": 2.3331061006391582,
329
+ "learning_rate": 4.98752951640059e-06,
330
+ "loss": 0.6364,
331
+ "step": 450
332
+ },
333
+ {
334
+ "epoch": 0.26,
335
+ "grad_norm": 2.159695737484098,
336
+ "learning_rate": 4.984913351681871e-06,
337
+ "loss": 0.6224,
338
+ "step": 460
339
+ },
340
+ {
341
+ "epoch": 0.27,
342
+ "grad_norm": 2.100223862687521,
343
+ "learning_rate": 4.982049078084072e-06,
344
+ "loss": 0.6386,
345
+ "step": 470
346
+ },
347
+ {
348
+ "epoch": 0.27,
349
+ "grad_norm": 2.260448805877094,
350
+ "learning_rate": 4.9789369815937075e-06,
351
+ "loss": 0.6329,
352
+ "step": 480
353
+ },
354
+ {
355
+ "epoch": 0.28,
356
+ "grad_norm": 2.2109790785096957,
357
+ "learning_rate": 4.975577372941441e-06,
358
+ "loss": 0.6126,
359
+ "step": 490
360
+ },
361
+ {
362
+ "epoch": 0.29,
363
+ "grad_norm": 174.20789307969923,
364
+ "learning_rate": 4.9719705875710545e-06,
365
+ "loss": 0.6226,
366
+ "step": 500
367
+ },
368
+ {
369
+ "epoch": 0.29,
370
+ "eval_loss": 0.6215025186538696,
371
+ "eval_runtime": 530.7348,
372
+ "eval_samples_per_second": 23.332,
373
+ "eval_steps_per_second": 0.729,
374
+ "step": 500
375
+ },
376
+ {
377
+ "epoch": 0.29,
378
+ "grad_norm": 59.547555932050344,
379
+ "learning_rate": 4.968116985605963e-06,
380
+ "loss": 0.676,
381
+ "step": 510
382
+ },
383
+ {
384
+ "epoch": 0.3,
385
+ "grad_norm": 5.0119747977301135,
386
+ "learning_rate": 4.964016951813248e-06,
387
+ "loss": 0.6415,
388
+ "step": 520
389
+ },
390
+ {
391
+ "epoch": 0.3,
392
+ "grad_norm": 2.4337121629645613,
393
+ "learning_rate": 4.959670895565248e-06,
394
+ "loss": 0.6195,
395
+ "step": 530
396
+ },
397
+ {
398
+ "epoch": 0.31,
399
+ "grad_norm": 2.175705909128136,
400
+ "learning_rate": 4.955079250798682e-06,
401
+ "loss": 0.6362,
402
+ "step": 540
403
+ },
404
+ {
405
+ "epoch": 0.31,
406
+ "grad_norm": 2.189681659202465,
407
+ "learning_rate": 4.950242475971321e-06,
408
+ "loss": 0.6351,
409
+ "step": 550
410
+ },
411
+ {
412
+ "epoch": 0.32,
413
+ "grad_norm": 2.1123816587264144,
414
+ "learning_rate": 4.9451610540162114e-06,
415
+ "loss": 0.6284,
416
+ "step": 560
417
+ },
418
+ {
419
+ "epoch": 0.33,
420
+ "grad_norm": 2.210287811195601,
421
+ "learning_rate": 4.939835492293463e-06,
422
+ "loss": 0.6219,
423
+ "step": 570
424
+ },
425
+ {
426
+ "epoch": 0.33,
427
+ "grad_norm": 2.12233798540241,
428
+ "learning_rate": 4.934266322539584e-06,
429
+ "loss": 0.6331,
430
+ "step": 580
431
+ },
432
+ {
433
+ "epoch": 0.34,
434
+ "grad_norm": 2.1741763930826132,
435
+ "learning_rate": 4.92845410081439e-06,
436
+ "loss": 0.6166,
437
+ "step": 590
438
+ },
439
+ {
440
+ "epoch": 0.34,
441
+ "grad_norm": 22.85902590832313,
442
+ "learning_rate": 4.922399407445491e-06,
443
+ "loss": 0.6174,
444
+ "step": 600
445
+ },
446
+ {
447
+ "epoch": 0.35,
448
+ "grad_norm": 2.2404434892749006,
449
+ "learning_rate": 4.9161028469703345e-06,
450
+ "loss": 0.6224,
451
+ "step": 610
452
+ },
453
+ {
454
+ "epoch": 0.35,
455
+ "grad_norm": 2.2681579472027527,
456
+ "learning_rate": 4.909565048075859e-06,
457
+ "loss": 0.6281,
458
+ "step": 620
459
+ },
460
+ {
461
+ "epoch": 0.36,
462
+ "grad_norm": 2.194186874479834,
463
+ "learning_rate": 4.902786663535714e-06,
464
+ "loss": 0.5974,
465
+ "step": 630
466
+ },
467
+ {
468
+ "epoch": 0.37,
469
+ "grad_norm": 1.9753405498524519,
470
+ "learning_rate": 4.895768370145081e-06,
471
+ "loss": 0.6133,
472
+ "step": 640
473
+ },
474
+ {
475
+ "epoch": 0.37,
476
+ "grad_norm": 1.9627709932695874,
477
+ "learning_rate": 4.888510868653107e-06,
478
+ "loss": 0.5979,
479
+ "step": 650
480
+ },
481
+ {
482
+ "epoch": 0.38,
483
+ "grad_norm": 2.0978691375994383,
484
+ "learning_rate": 4.881014883692931e-06,
485
+ "loss": 0.6153,
486
+ "step": 660
487
+ },
488
+ {
489
+ "epoch": 0.38,
490
+ "grad_norm": 1.9322421934439415,
491
+ "learning_rate": 4.87328116370933e-06,
492
+ "loss": 0.6091,
493
+ "step": 670
494
+ },
495
+ {
496
+ "epoch": 0.39,
497
+ "grad_norm": 2.09891544330605,
498
+ "learning_rate": 4.865310480883998e-06,
499
+ "loss": 0.6114,
500
+ "step": 680
501
+ },
502
+ {
503
+ "epoch": 0.39,
504
+ "grad_norm": 2.1055346718055223,
505
+ "learning_rate": 4.857103631058438e-06,
506
+ "loss": 0.613,
507
+ "step": 690
508
+ },
509
+ {
510
+ "epoch": 0.4,
511
+ "grad_norm": 2.1490868409285557,
512
+ "learning_rate": 4.848661433654509e-06,
513
+ "loss": 0.6013,
514
+ "step": 700
515
+ },
516
+ {
517
+ "epoch": 0.41,
518
+ "grad_norm": 2.0204589894962233,
519
+ "learning_rate": 4.8399847315926e-06,
520
+ "loss": 0.612,
521
+ "step": 710
522
+ },
523
+ {
524
+ "epoch": 0.41,
525
+ "grad_norm": 2.119211573140167,
526
+ "learning_rate": 4.831074391207477e-06,
527
+ "loss": 0.6056,
528
+ "step": 720
529
+ },
530
+ {
531
+ "epoch": 0.42,
532
+ "grad_norm": 2.1096094058746195,
533
+ "learning_rate": 4.821931302161775e-06,
534
+ "loss": 0.5906,
535
+ "step": 730
536
+ },
537
+ {
538
+ "epoch": 0.42,
539
+ "grad_norm": 2.0352305435483338,
540
+ "learning_rate": 4.812556377357175e-06,
541
+ "loss": 0.5875,
542
+ "step": 740
543
+ },
544
+ {
545
+ "epoch": 0.43,
546
+ "grad_norm": 2.095591458734852,
547
+ "learning_rate": 4.8029505528432516e-06,
548
+ "loss": 0.6023,
549
+ "step": 750
550
+ },
551
+ {
552
+ "epoch": 0.43,
553
+ "grad_norm": 2.2591386947868095,
554
+ "learning_rate": 4.793114787724013e-06,
555
+ "loss": 0.5852,
556
+ "step": 760
557
+ },
558
+ {
559
+ "epoch": 0.44,
560
+ "grad_norm": 2.1831334550022943,
561
+ "learning_rate": 4.783050064062135e-06,
562
+ "loss": 0.6132,
563
+ "step": 770
564
+ },
565
+ {
566
+ "epoch": 0.45,
567
+ "grad_norm": 2.079194401695253,
568
+ "learning_rate": 4.77275738678091e-06,
569
+ "loss": 0.5954,
570
+ "step": 780
571
+ },
572
+ {
573
+ "epoch": 0.45,
574
+ "grad_norm": 2.0851818697723115,
575
+ "learning_rate": 4.7622377835639065e-06,
576
+ "loss": 0.5904,
577
+ "step": 790
578
+ },
579
+ {
580
+ "epoch": 0.46,
581
+ "grad_norm": 2.240834597974655,
582
+ "learning_rate": 4.751492304752362e-06,
583
+ "loss": 0.5881,
584
+ "step": 800
585
+ },
586
+ {
587
+ "epoch": 0.46,
588
+ "grad_norm": 2.1904386633647763,
589
+ "learning_rate": 4.740522023240308e-06,
590
+ "loss": 0.5938,
591
+ "step": 810
592
+ },
593
+ {
594
+ "epoch": 0.47,
595
+ "grad_norm": 2.0784086731070306,
596
+ "learning_rate": 4.729328034367447e-06,
597
+ "loss": 0.5893,
598
+ "step": 820
599
+ },
600
+ {
601
+ "epoch": 0.47,
602
+ "grad_norm": 2.2844448327810905,
603
+ "learning_rate": 4.717911455809782e-06,
604
+ "loss": 0.5846,
605
+ "step": 830
606
+ },
607
+ {
608
+ "epoch": 0.48,
609
+ "grad_norm": 2.455456003484141,
610
+ "learning_rate": 4.7062734274680336e-06,
611
+ "loss": 0.5885,
612
+ "step": 840
613
+ },
614
+ {
615
+ "epoch": 0.49,
616
+ "grad_norm": 2.140011586996601,
617
+ "learning_rate": 4.694415111353809e-06,
618
+ "loss": 0.5876,
619
+ "step": 850
620
+ },
621
+ {
622
+ "epoch": 0.49,
623
+ "grad_norm": 2.063342954699121,
624
+ "learning_rate": 4.682337691473593e-06,
625
+ "loss": 0.5864,
626
+ "step": 860
627
+ },
628
+ {
629
+ "epoch": 0.5,
630
+ "grad_norm": 2.0835701678769625,
631
+ "learning_rate": 4.670042373710524e-06,
632
+ "loss": 0.5892,
633
+ "step": 870
634
+ },
635
+ {
636
+ "epoch": 0.5,
637
+ "grad_norm": 2.2923758881575034,
638
+ "learning_rate": 4.657530385703989e-06,
639
+ "loss": 0.5805,
640
+ "step": 880
641
+ },
642
+ {
643
+ "epoch": 0.51,
644
+ "grad_norm": 2.084287121874536,
645
+ "learning_rate": 4.644802976727054e-06,
646
+ "loss": 0.5906,
647
+ "step": 890
648
+ },
649
+ {
650
+ "epoch": 0.52,
651
+ "grad_norm": 2.0504569347730994,
652
+ "learning_rate": 4.631861417561725e-06,
653
+ "loss": 0.5727,
654
+ "step": 900
655
+ },
656
+ {
657
+ "epoch": 0.52,
658
+ "grad_norm": 2.2226821794710268,
659
+ "learning_rate": 4.618707000372067e-06,
660
+ "loss": 0.5665,
661
+ "step": 910
662
+ },
663
+ {
664
+ "epoch": 0.53,
665
+ "grad_norm": 2.0195324875616167,
666
+ "learning_rate": 4.605341038575188e-06,
667
+ "loss": 0.5819,
668
+ "step": 920
669
+ },
670
+ {
671
+ "epoch": 0.53,
672
+ "grad_norm": 2.2720158701812023,
673
+ "learning_rate": 4.591764866710093e-06,
674
+ "loss": 0.5702,
675
+ "step": 930
676
+ },
677
+ {
678
+ "epoch": 0.54,
679
+ "grad_norm": 2.052632552841863,
680
+ "learning_rate": 4.577979840304446e-06,
681
+ "loss": 0.5704,
682
+ "step": 940
683
+ },
684
+ {
685
+ "epoch": 0.54,
686
+ "grad_norm": 2.07608686655621,
687
+ "learning_rate": 4.563987335739216e-06,
688
+ "loss": 0.5705,
689
+ "step": 950
690
+ },
691
+ {
692
+ "epoch": 0.55,
693
+ "grad_norm": 2.144036474992449,
694
+ "learning_rate": 4.549788750111256e-06,
695
+ "loss": 0.584,
696
+ "step": 960
697
+ },
698
+ {
699
+ "epoch": 0.56,
700
+ "grad_norm": 2.038070637205325,
701
+ "learning_rate": 4.535385501093806e-06,
702
+ "loss": 0.5709,
703
+ "step": 970
704
+ },
705
+ {
706
+ "epoch": 0.56,
707
+ "grad_norm": 3.788413264230372,
708
+ "learning_rate": 4.520779026794947e-06,
709
+ "loss": 0.5787,
710
+ "step": 980
711
+ },
712
+ {
713
+ "epoch": 0.57,
714
+ "grad_norm": 2.221280506319893,
715
+ "learning_rate": 4.505970785614007e-06,
716
+ "loss": 0.568,
717
+ "step": 990
718
+ },
719
+ {
720
+ "epoch": 0.57,
721
+ "grad_norm": 2.1628156092927973,
722
+ "learning_rate": 4.490962256095951e-06,
723
+ "loss": 0.5616,
724
+ "step": 1000
725
+ },
726
+ {
727
+ "epoch": 0.57,
728
+ "eval_loss": 0.5683727860450745,
729
+ "eval_runtime": 531.1147,
730
+ "eval_samples_per_second": 23.315,
731
+ "eval_steps_per_second": 0.729,
732
+ "step": 1000
733
+ },
734
+ {
735
+ "epoch": 0.58,
736
+ "grad_norm": 2.2129498718686396,
737
+ "learning_rate": 4.475754936783749e-06,
738
+ "loss": 0.569,
739
+ "step": 1010
740
+ },
741
+ {
742
+ "epoch": 0.58,
743
+ "grad_norm": 2.1882249016919277,
744
+ "learning_rate": 4.460350346068755e-06,
745
+ "loss": 0.5649,
746
+ "step": 1020
747
+ },
748
+ {
749
+ "epoch": 0.59,
750
+ "grad_norm": 2.3225486571596194,
751
+ "learning_rate": 4.4447500220390994e-06,
752
+ "loss": 0.5692,
753
+ "step": 1030
754
+ },
755
+ {
756
+ "epoch": 0.6,
757
+ "grad_norm": 2.316022975291687,
758
+ "learning_rate": 4.428955522326122e-06,
759
+ "loss": 0.575,
760
+ "step": 1040
761
+ },
762
+ {
763
+ "epoch": 0.6,
764
+ "grad_norm": 2.078276101778362,
765
+ "learning_rate": 4.4129684239488415e-06,
766
+ "loss": 0.5644,
767
+ "step": 1050
768
+ },
769
+ {
770
+ "epoch": 0.61,
771
+ "grad_norm": 2.1582893234263714,
772
+ "learning_rate": 4.396790323156503e-06,
773
+ "loss": 0.5647,
774
+ "step": 1060
775
+ },
776
+ {
777
+ "epoch": 0.61,
778
+ "grad_norm": 2.1862836513401933,
779
+ "learning_rate": 4.380422835269193e-06,
780
+ "loss": 0.5736,
781
+ "step": 1070
782
+ },
783
+ {
784
+ "epoch": 0.62,
785
+ "grad_norm": 2.2841548421776636,
786
+ "learning_rate": 4.363867594516561e-06,
787
+ "loss": 0.5655,
788
+ "step": 1080
789
+ },
790
+ {
791
+ "epoch": 0.62,
792
+ "grad_norm": 2.280570400516185,
793
+ "learning_rate": 4.347126253874644e-06,
794
+ "loss": 0.562,
795
+ "step": 1090
796
+ },
797
+ {
798
+ "epoch": 0.63,
799
+ "grad_norm": 2.2076164515797547,
800
+ "learning_rate": 4.3302004849008264e-06,
801
+ "loss": 0.5641,
802
+ "step": 1100
803
+ },
804
+ {
805
+ "epoch": 0.64,
806
+ "grad_norm": 2.360813863915769,
807
+ "learning_rate": 4.313091977566938e-06,
808
+ "loss": 0.5657,
809
+ "step": 1110
810
+ },
811
+ {
812
+ "epoch": 0.64,
813
+ "grad_norm": 2.2467158945171457,
814
+ "learning_rate": 4.2958024400905215e-06,
815
+ "loss": 0.5626,
816
+ "step": 1120
817
+ },
818
+ {
819
+ "epoch": 0.65,
820
+ "grad_norm": 2.1411390923548197,
821
+ "learning_rate": 4.278333598764271e-06,
822
+ "loss": 0.5471,
823
+ "step": 1130
824
+ },
825
+ {
826
+ "epoch": 0.65,
827
+ "grad_norm": 2.1385307098732103,
828
+ "learning_rate": 4.260687197783669e-06,
829
+ "loss": 0.5581,
830
+ "step": 1140
831
+ },
832
+ {
833
+ "epoch": 0.66,
834
+ "grad_norm": 2.212052709050042,
835
+ "learning_rate": 4.242864999072832e-06,
836
+ "loss": 0.556,
837
+ "step": 1150
838
+ },
839
+ {
840
+ "epoch": 0.66,
841
+ "grad_norm": 2.210641112539053,
842
+ "learning_rate": 4.224868782108595e-06,
843
+ "loss": 0.5396,
844
+ "step": 1160
845
+ },
846
+ {
847
+ "epoch": 0.67,
848
+ "grad_norm": 2.154384214473984,
849
+ "learning_rate": 4.206700343742835e-06,
850
+ "loss": 0.5499,
851
+ "step": 1170
852
+ },
853
+ {
854
+ "epoch": 0.68,
855
+ "grad_norm": 2.3776492042765645,
856
+ "learning_rate": 4.1883614980230625e-06,
857
+ "loss": 0.5472,
858
+ "step": 1180
859
+ },
860
+ {
861
+ "epoch": 0.68,
862
+ "grad_norm": 2.4769783683847133,
863
+ "learning_rate": 4.169854076011293e-06,
864
+ "loss": 0.5449,
865
+ "step": 1190
866
+ },
867
+ {
868
+ "epoch": 0.69,
869
+ "grad_norm": 2.2374406025722604,
870
+ "learning_rate": 4.151179925601228e-06,
871
+ "loss": 0.5514,
872
+ "step": 1200
873
+ },
874
+ {
875
+ "epoch": 0.69,
876
+ "grad_norm": 2.2566112951367314,
877
+ "learning_rate": 4.13234091133375e-06,
878
+ "loss": 0.5474,
879
+ "step": 1210
880
+ },
881
+ {
882
+ "epoch": 0.7,
883
+ "grad_norm": 2.367681149601566,
884
+ "learning_rate": 4.113338914210745e-06,
885
+ "loss": 0.5539,
886
+ "step": 1220
887
+ },
888
+ {
889
+ "epoch": 0.7,
890
+ "grad_norm": 2.1661561664676077,
891
+ "learning_rate": 4.094175831507307e-06,
892
+ "loss": 0.5537,
893
+ "step": 1230
894
+ },
895
+ {
896
+ "epoch": 0.71,
897
+ "grad_norm": 2.2108776725962787,
898
+ "learning_rate": 4.074853576582293e-06,
899
+ "loss": 0.5384,
900
+ "step": 1240
901
+ },
902
+ {
903
+ "epoch": 0.72,
904
+ "grad_norm": 2.437065860368966,
905
+ "learning_rate": 4.055374078687283e-06,
906
+ "loss": 0.5557,
907
+ "step": 1250
908
+ },
909
+ {
910
+ "epoch": 0.72,
911
+ "grad_norm": 2.3757604501117604,
912
+ "learning_rate": 4.03573928277395e-06,
913
+ "loss": 0.5429,
914
+ "step": 1260
915
+ },
916
+ {
917
+ "epoch": 0.73,
918
+ "grad_norm": 2.299133822726468,
919
+ "learning_rate": 4.015951149299875e-06,
920
+ "loss": 0.5373,
921
+ "step": 1270
922
+ },
923
+ {
924
+ "epoch": 0.73,
925
+ "grad_norm": 2.192017012064702,
926
+ "learning_rate": 3.996011654032785e-06,
927
+ "loss": 0.5448,
928
+ "step": 1280
929
+ },
930
+ {
931
+ "epoch": 0.74,
932
+ "grad_norm": 2.304906002469218,
933
+ "learning_rate": 3.975922787853296e-06,
934
+ "loss": 0.5394,
935
+ "step": 1290
936
+ },
937
+ {
938
+ "epoch": 0.74,
939
+ "grad_norm": 2.436764853283025,
940
+ "learning_rate": 3.955686556556123e-06,
941
+ "loss": 0.5447,
942
+ "step": 1300
943
+ },
944
+ {
945
+ "epoch": 0.75,
946
+ "grad_norm": 2.494565076053036,
947
+ "learning_rate": 3.935304980649813e-06,
948
+ "loss": 0.5272,
949
+ "step": 1310
950
+ },
951
+ {
952
+ "epoch": 0.76,
953
+ "grad_norm": 2.228063884542341,
954
+ "learning_rate": 3.914780095155003e-06,
955
+ "loss": 0.5432,
956
+ "step": 1320
957
+ },
958
+ {
959
+ "epoch": 0.76,
960
+ "grad_norm": 2.2231946750720732,
961
+ "learning_rate": 3.894113949401233e-06,
962
+ "loss": 0.5286,
963
+ "step": 1330
964
+ },
965
+ {
966
+ "epoch": 0.77,
967
+ "grad_norm": 2.503855593624124,
968
+ "learning_rate": 3.873308606822323e-06,
969
+ "loss": 0.5427,
970
+ "step": 1340
971
+ },
972
+ {
973
+ "epoch": 0.77,
974
+ "grad_norm": 2.350038662257984,
975
+ "learning_rate": 3.852366144750358e-06,
976
+ "loss": 0.5359,
977
+ "step": 1350
978
+ },
979
+ {
980
+ "epoch": 0.78,
981
+ "grad_norm": 2.4984837734626075,
982
+ "learning_rate": 3.831288654208264e-06,
983
+ "loss": 0.5362,
984
+ "step": 1360
985
+ },
986
+ {
987
+ "epoch": 0.78,
988
+ "grad_norm": 2.4092005158856806,
989
+ "learning_rate": 3.810078239701033e-06,
990
+ "loss": 0.5427,
991
+ "step": 1370
992
+ },
993
+ {
994
+ "epoch": 0.79,
995
+ "grad_norm": 2.4167184400341757,
996
+ "learning_rate": 3.788737019005593e-06,
997
+ "loss": 0.5292,
998
+ "step": 1380
999
+ },
1000
+ {
1001
+ "epoch": 0.8,
1002
+ "grad_norm": 2.489261713837357,
1003
+ "learning_rate": 3.7672671229593617e-06,
1004
+ "loss": 0.5328,
1005
+ "step": 1390
1006
+ },
1007
+ {
1008
+ "epoch": 0.8,
1009
+ "grad_norm": 2.3416784142161937,
1010
+ "learning_rate": 3.7456706952474853e-06,
1011
+ "loss": 0.5337,
1012
+ "step": 1400
1013
+ },
1014
+ {
1015
+ "epoch": 0.81,
1016
+ "grad_norm": 2.3405171601297887,
1017
+ "learning_rate": 3.723949892188801e-06,
1018
+ "loss": 0.5306,
1019
+ "step": 1410
1020
+ },
1021
+ {
1022
+ "epoch": 0.81,
1023
+ "grad_norm": 2.5435746837026616,
1024
+ "learning_rate": 3.7021068825205385e-06,
1025
+ "loss": 0.536,
1026
+ "step": 1420
1027
+ },
1028
+ {
1029
+ "epoch": 0.82,
1030
+ "grad_norm": 2.517397794058062,
1031
+ "learning_rate": 3.680143847181783e-06,
1032
+ "loss": 0.5304,
1033
+ "step": 1430
1034
+ },
1035
+ {
1036
+ "epoch": 0.82,
1037
+ "grad_norm": 2.4432716242411665,
1038
+ "learning_rate": 3.6580629790957073e-06,
1039
+ "loss": 0.5304,
1040
+ "step": 1440
1041
+ },
1042
+ {
1043
+ "epoch": 0.83,
1044
+ "grad_norm": 2.930860876384952,
1045
+ "learning_rate": 3.635866482950628e-06,
1046
+ "loss": 0.5347,
1047
+ "step": 1450
1048
+ },
1049
+ {
1050
+ "epoch": 0.84,
1051
+ "grad_norm": 2.9347320732859865,
1052
+ "learning_rate": 3.613556574979869e-06,
1053
+ "loss": 0.5301,
1054
+ "step": 1460
1055
+ },
1056
+ {
1057
+ "epoch": 0.84,
1058
+ "grad_norm": 3.563032283293063,
1059
+ "learning_rate": 3.5911354827404817e-06,
1060
+ "loss": 0.5218,
1061
+ "step": 1470
1062
+ },
1063
+ {
1064
+ "epoch": 0.85,
1065
+ "grad_norm": 3.2275844302722705,
1066
+ "learning_rate": 3.568605444890832e-06,
1067
+ "loss": 0.5352,
1068
+ "step": 1480
1069
+ },
1070
+ {
1071
+ "epoch": 0.85,
1072
+ "grad_norm": 2.6488408673845845,
1073
+ "learning_rate": 3.545968710967079e-06,
1074
+ "loss": 0.5343,
1075
+ "step": 1490
1076
+ },
1077
+ {
1078
+ "epoch": 0.86,
1079
+ "grad_norm": 540.9225446614429,
1080
+ "learning_rate": 3.5232275411585665e-06,
1081
+ "loss": 0.5384,
1082
+ "step": 1500
1083
+ },
1084
+ {
1085
+ "epoch": 0.86,
1086
+ "eval_loss": 0.5287850499153137,
1087
+ "eval_runtime": 532.1842,
1088
+ "eval_samples_per_second": 23.268,
1089
+ "eval_steps_per_second": 0.727,
1090
+ "step": 1500
1091
+ },
1092
+ {
1093
+ "epoch": 0.86,
1094
+ "grad_norm": 8.321452242337378,
1095
+ "learning_rate": 3.500384206082155e-06,
1096
+ "loss": 0.5295,
1097
+ "step": 1510
1098
+ },
1099
+ {
1100
+ "epoch": 0.87,
1101
+ "grad_norm": 2.815363351399787,
1102
+ "learning_rate": 3.4774409865555064e-06,
1103
+ "loss": 0.54,
1104
+ "step": 1520
1105
+ },
1106
+ {
1107
+ "epoch": 0.88,
1108
+ "grad_norm": 2.64837752834866,
1109
+ "learning_rate": 3.4544001733693534e-06,
1110
+ "loss": 0.5205,
1111
+ "step": 1530
1112
+ },
1113
+ {
1114
+ "epoch": 0.88,
1115
+ "grad_norm": 2.876814676291678,
1116
+ "learning_rate": 3.4312640670587738e-06,
1117
+ "loss": 0.5263,
1118
+ "step": 1540
1119
+ },
1120
+ {
1121
+ "epoch": 0.89,
1122
+ "grad_norm": 2.8619136430308094,
1123
+ "learning_rate": 3.408034977673493e-06,
1124
+ "loss": 0.5272,
1125
+ "step": 1550
1126
+ },
1127
+ {
1128
+ "epoch": 0.89,
1129
+ "grad_norm": 2.5910982551975787,
1130
+ "learning_rate": 3.384715224547232e-06,
1131
+ "loss": 0.516,
1132
+ "step": 1560
1133
+ },
1134
+ {
1135
+ "epoch": 0.9,
1136
+ "grad_norm": 2.3973340910193968,
1137
+ "learning_rate": 3.36130713606613e-06,
1138
+ "loss": 0.5157,
1139
+ "step": 1570
1140
+ },
1141
+ {
1142
+ "epoch": 0.9,
1143
+ "grad_norm": 2.4753957257302983,
1144
+ "learning_rate": 3.337813049436268e-06,
1145
+ "loss": 0.5151,
1146
+ "step": 1580
1147
+ },
1148
+ {
1149
+ "epoch": 0.91,
1150
+ "grad_norm": 2.4327407017468077,
1151
+ "learning_rate": 3.3142353104503055e-06,
1152
+ "loss": 0.5113,
1153
+ "step": 1590
1154
+ },
1155
+ {
1156
+ "epoch": 0.92,
1157
+ "grad_norm": 2.583443162287294,
1158
+ "learning_rate": 3.290576273253262e-06,
1159
+ "loss": 0.5137,
1160
+ "step": 1600
1161
+ },
1162
+ {
1163
+ "epoch": 0.92,
1164
+ "grad_norm": 2.8083503640404754,
1165
+ "learning_rate": 3.2668383001074646e-06,
1166
+ "loss": 0.5139,
1167
+ "step": 1610
1168
+ },
1169
+ {
1170
+ "epoch": 0.93,
1171
+ "grad_norm": 2.561938411287161,
1172
+ "learning_rate": 3.2430237611566874e-06,
1173
+ "loss": 0.5087,
1174
+ "step": 1620
1175
+ },
1176
+ {
1177
+ "epoch": 0.93,
1178
+ "grad_norm": 4.820890836324099,
1179
+ "learning_rate": 3.2191350341895012e-06,
1180
+ "loss": 0.5175,
1181
+ "step": 1630
1182
+ },
1183
+ {
1184
+ "epoch": 0.94,
1185
+ "grad_norm": 4.206676693632578,
1186
+ "learning_rate": 3.1951745044018584e-06,
1187
+ "loss": 0.5271,
1188
+ "step": 1640
1189
+ },
1190
+ {
1191
+ "epoch": 0.94,
1192
+ "grad_norm": 25.523830030080394,
1193
+ "learning_rate": 3.1711445641589435e-06,
1194
+ "loss": 0.5622,
1195
+ "step": 1650
1196
+ },
1197
+ {
1198
+ "epoch": 0.95,
1199
+ "grad_norm": 11.240090997530515,
1200
+ "learning_rate": 3.147047612756302e-06,
1201
+ "loss": 0.9079,
1202
+ "step": 1660
1203
+ },
1204
+ {
1205
+ "epoch": 0.96,
1206
+ "grad_norm": 29.22518153420536,
1207
+ "learning_rate": 3.122886056180284e-06,
1208
+ "loss": 0.7066,
1209
+ "step": 1670
1210
+ },
1211
+ {
1212
+ "epoch": 0.96,
1213
+ "grad_norm": 4.019885752857641,
1214
+ "learning_rate": 3.098662306867811e-06,
1215
+ "loss": 0.6342,
1216
+ "step": 1680
1217
+ },
1218
+ {
1219
+ "epoch": 0.97,
1220
+ "grad_norm": 5.411201020641005,
1221
+ "learning_rate": 3.074378783465507e-06,
1222
+ "loss": 0.6105,
1223
+ "step": 1690
1224
+ },
1225
+ {
1226
+ "epoch": 0.97,
1227
+ "grad_norm": 8.822887992474177,
1228
+ "learning_rate": 3.050037910588206e-06,
1229
+ "loss": 0.6115,
1230
+ "step": 1700
1231
+ },
1232
+ {
1233
+ "epoch": 0.98,
1234
+ "grad_norm": 5.0785295408950155,
1235
+ "learning_rate": 3.0256421185768616e-06,
1236
+ "loss": 0.5663,
1237
+ "step": 1710
1238
+ },
1239
+ {
1240
+ "epoch": 0.98,
1241
+ "grad_norm": 2.9678315863647526,
1242
+ "learning_rate": 3.0011938432558873e-06,
1243
+ "loss": 0.5802,
1244
+ "step": 1720
1245
+ },
1246
+ {
1247
+ "epoch": 0.99,
1248
+ "grad_norm": 3.412236320518679,
1249
+ "learning_rate": 2.976695525689952e-06,
1250
+ "loss": 0.5684,
1251
+ "step": 1730
1252
+ },
1253
+ {
1254
+ "epoch": 1.0,
1255
+ "grad_norm": 3.2044150474863655,
1256
+ "learning_rate": 2.9521496119402453e-06,
1257
+ "loss": 0.5535,
1258
+ "step": 1740
1259
+ },
1260
+ {
1261
+ "epoch": 1.0,
1262
+ "grad_norm": 3.9473879559645852,
1263
+ "learning_rate": 2.9275585528202516e-06,
1264
+ "loss": 0.5314,
1265
+ "step": 1750
1266
+ },
1267
+ {
1268
+ "epoch": 1.01,
1269
+ "grad_norm": 3.2348412490515455,
1270
+ "learning_rate": 2.9029248036510406e-06,
1271
+ "loss": 0.4765,
1272
+ "step": 1760
1273
+ },
1274
+ {
1275
+ "epoch": 1.01,
1276
+ "grad_norm": 3.0685208563178854,
1277
+ "learning_rate": 2.87825082401612e-06,
1278
+ "loss": 0.4748,
1279
+ "step": 1770
1280
+ },
1281
+ {
1282
+ "epoch": 1.02,
1283
+ "grad_norm": 2.852153504448215,
1284
+ "learning_rate": 2.8535390775158495e-06,
1285
+ "loss": 0.47,
1286
+ "step": 1780
1287
+ },
1288
+ {
1289
+ "epoch": 1.02,
1290
+ "grad_norm": 4.143044242647944,
1291
+ "learning_rate": 2.8287920315214647e-06,
1292
+ "loss": 0.4573,
1293
+ "step": 1790
1294
+ },
1295
+ {
1296
+ "epoch": 1.03,
1297
+ "grad_norm": 34.463143285380006,
1298
+ "learning_rate": 2.8040121569287155e-06,
1299
+ "loss": 0.4584,
1300
+ "step": 1800
1301
+ },
1302
+ {
1303
+ "epoch": 1.04,
1304
+ "grad_norm": 2.661591324494075,
1305
+ "learning_rate": 2.7792019279111604e-06,
1306
+ "loss": 0.4471,
1307
+ "step": 1810
1308
+ },
1309
+ {
1310
+ "epoch": 1.04,
1311
+ "grad_norm": 2.6072582596419567,
1312
+ "learning_rate": 2.7543638216731284e-06,
1313
+ "loss": 0.4489,
1314
+ "step": 1820
1315
+ },
1316
+ {
1317
+ "epoch": 1.05,
1318
+ "grad_norm": 2.8084493663354397,
1319
+ "learning_rate": 2.7295003182023794e-06,
1320
+ "loss": 0.4476,
1321
+ "step": 1830
1322
+ },
1323
+ {
1324
+ "epoch": 1.05,
1325
+ "grad_norm": 2.8081294693878798,
1326
+ "learning_rate": 2.7046139000224882e-06,
1327
+ "loss": 0.4527,
1328
+ "step": 1840
1329
+ },
1330
+ {
1331
+ "epoch": 1.06,
1332
+ "grad_norm": 2.8187716457470255,
1333
+ "learning_rate": 2.6797070519449735e-06,
1334
+ "loss": 0.4371,
1335
+ "step": 1850
1336
+ },
1337
+ {
1338
+ "epoch": 1.06,
1339
+ "grad_norm": 2.6664541594312734,
1340
+ "learning_rate": 2.654782260821198e-06,
1341
+ "loss": 0.4489,
1342
+ "step": 1860
1343
+ },
1344
+ {
1345
+ "epoch": 1.07,
1346
+ "grad_norm": 3.1660587876790207,
1347
+ "learning_rate": 2.6298420152940706e-06,
1348
+ "loss": 0.4464,
1349
+ "step": 1870
1350
+ },
1351
+ {
1352
+ "epoch": 1.08,
1353
+ "grad_norm": 2.578632187270232,
1354
+ "learning_rate": 2.6048888055495586e-06,
1355
+ "loss": 0.4436,
1356
+ "step": 1880
1357
+ },
1358
+ {
1359
+ "epoch": 1.08,
1360
+ "grad_norm": 2.898387161362659,
1361
+ "learning_rate": 2.5799251230680572e-06,
1362
+ "loss": 0.4373,
1363
+ "step": 1890
1364
+ },
1365
+ {
1366
+ "epoch": 1.09,
1367
+ "grad_norm": 2.675237350045505,
1368
+ "learning_rate": 2.554953460375624e-06,
1369
+ "loss": 0.4524,
1370
+ "step": 1900
1371
+ },
1372
+ {
1373
+ "epoch": 1.09,
1374
+ "grad_norm": 2.714776711198956,
1375
+ "learning_rate": 2.529976310795108e-06,
1376
+ "loss": 0.4321,
1377
+ "step": 1910
1378
+ },
1379
+ {
1380
+ "epoch": 1.1,
1381
+ "grad_norm": 2.710787483431792,
1382
+ "learning_rate": 2.5049961681972035e-06,
1383
+ "loss": 0.4319,
1384
+ "step": 1920
1385
+ },
1386
+ {
1387
+ "epoch": 1.1,
1388
+ "grad_norm": 2.6437855709831743,
1389
+ "learning_rate": 2.4800155267514455e-06,
1390
+ "loss": 0.431,
1391
+ "step": 1930
1392
+ },
1393
+ {
1394
+ "epoch": 1.11,
1395
+ "grad_norm": 2.566308240056163,
1396
+ "learning_rate": 2.455036880677177e-06,
1397
+ "loss": 0.4358,
1398
+ "step": 1940
1399
+ },
1400
+ {
1401
+ "epoch": 1.12,
1402
+ "grad_norm": 2.6611983864059927,
1403
+ "learning_rate": 2.430062723994513e-06,
1404
+ "loss": 0.4343,
1405
+ "step": 1950
1406
+ },
1407
+ {
1408
+ "epoch": 1.12,
1409
+ "grad_norm": 2.6472716826792393,
1410
+ "learning_rate": 2.4050955502753164e-06,
1411
+ "loss": 0.4481,
1412
+ "step": 1960
1413
+ },
1414
+ {
1415
+ "epoch": 1.13,
1416
+ "grad_norm": 2.698904335701275,
1417
+ "learning_rate": 2.38013785239423e-06,
1418
+ "loss": 0.4314,
1419
+ "step": 1970
1420
+ },
1421
+ {
1422
+ "epoch": 1.13,
1423
+ "grad_norm": 2.5697229032197413,
1424
+ "learning_rate": 2.3551921222797736e-06,
1425
+ "loss": 0.4374,
1426
+ "step": 1980
1427
+ },
1428
+ {
1429
+ "epoch": 1.14,
1430
+ "grad_norm": 2.9083035166905145,
1431
+ "learning_rate": 2.330260850665529e-06,
1432
+ "loss": 0.4311,
1433
+ "step": 1990
1434
+ },
1435
+ {
1436
+ "epoch": 1.14,
1437
+ "grad_norm": 2.864477813697365,
1438
+ "learning_rate": 2.305346526841456e-06,
1439
+ "loss": 0.4248,
1440
+ "step": 2000
1441
+ },
1442
+ {
1443
+ "epoch": 1.14,
1444
+ "eval_loss": 0.5098316669464111,
1445
+ "eval_runtime": 531.7861,
1446
+ "eval_samples_per_second": 23.286,
1447
+ "eval_steps_per_second": 0.728,
1448
+ "step": 2000
1449
+ },
1450
+ {
1451
+ "epoch": 1.15,
1452
+ "grad_norm": 2.487093905262324,
1453
+ "learning_rate": 2.2804516384053422e-06,
1454
+ "loss": 0.4278,
1455
+ "step": 2010
1456
+ },
1457
+ {
1458
+ "epoch": 1.16,
1459
+ "grad_norm": 2.4697444658310115,
1460
+ "learning_rate": 2.2555786710144274e-06,
1461
+ "loss": 0.4185,
1462
+ "step": 2020
1463
+ },
1464
+ {
1465
+ "epoch": 1.16,
1466
+ "grad_norm": 2.7888802934203376,
1467
+ "learning_rate": 2.2307301081372228e-06,
1468
+ "loss": 0.4205,
1469
+ "step": 2030
1470
+ },
1471
+ {
1472
+ "epoch": 1.17,
1473
+ "grad_norm": 2.7782246570408655,
1474
+ "learning_rate": 2.205908430805542e-06,
1475
+ "loss": 0.4186,
1476
+ "step": 2040
1477
+ },
1478
+ {
1479
+ "epoch": 1.17,
1480
+ "grad_norm": 2.855124513920933,
1481
+ "learning_rate": 2.181116117366783e-06,
1482
+ "loss": 0.4287,
1483
+ "step": 2050
1484
+ },
1485
+ {
1486
+ "epoch": 1.18,
1487
+ "grad_norm": 2.5830367229868982,
1488
+ "learning_rate": 2.1563556432364754e-06,
1489
+ "loss": 0.4266,
1490
+ "step": 2060
1491
+ },
1492
+ {
1493
+ "epoch": 1.18,
1494
+ "grad_norm": 2.7855942926027617,
1495
+ "learning_rate": 2.131629480651116e-06,
1496
+ "loss": 0.4169,
1497
+ "step": 2070
1498
+ },
1499
+ {
1500
+ "epoch": 1.19,
1501
+ "grad_norm": 2.625295284188482,
1502
+ "learning_rate": 2.1069400984213282e-06,
1503
+ "loss": 0.4189,
1504
+ "step": 2080
1505
+ },
1506
+ {
1507
+ "epoch": 1.2,
1508
+ "grad_norm": 2.656457764922864,
1509
+ "learning_rate": 2.0822899616853643e-06,
1510
+ "loss": 0.4393,
1511
+ "step": 2090
1512
+ },
1513
+ {
1514
+ "epoch": 1.2,
1515
+ "grad_norm": 2.3861057485273998,
1516
+ "learning_rate": 2.0576815316629615e-06,
1517
+ "loss": 0.4137,
1518
+ "step": 2100
1519
+ },
1520
+ {
1521
+ "epoch": 1.21,
1522
+ "grad_norm": 2.775579784902102,
1523
+ "learning_rate": 2.033117265409611e-06,
1524
+ "loss": 0.4107,
1525
+ "step": 2110
1526
+ },
1527
+ {
1528
+ "epoch": 1.21,
1529
+ "grad_norm": 2.7447136775018057,
1530
+ "learning_rate": 2.0085996155712205e-06,
1531
+ "loss": 0.4098,
1532
+ "step": 2120
1533
+ },
1534
+ {
1535
+ "epoch": 1.22,
1536
+ "grad_norm": 2.7615464883658265,
1537
+ "learning_rate": 1.984131030139231e-06,
1538
+ "loss": 0.4202,
1539
+ "step": 2130
1540
+ },
1541
+ {
1542
+ "epoch": 1.22,
1543
+ "grad_norm": 3.0966486839292684,
1544
+ "learning_rate": 1.9597139522061977e-06,
1545
+ "loss": 0.4307,
1546
+ "step": 2140
1547
+ },
1548
+ {
1549
+ "epoch": 1.23,
1550
+ "grad_norm": 2.596350491119526,
1551
+ "learning_rate": 1.9353508197218492e-06,
1552
+ "loss": 0.412,
1553
+ "step": 2150
1554
+ },
1555
+ {
1556
+ "epoch": 1.24,
1557
+ "grad_norm": 2.376403726879793,
1558
+ "learning_rate": 1.911044065249674e-06,
1559
+ "loss": 0.4115,
1560
+ "step": 2160
1561
+ },
1562
+ {
1563
+ "epoch": 1.24,
1564
+ "grad_norm": 2.77907836700564,
1565
+ "learning_rate": 1.886796115724039e-06,
1566
+ "loss": 0.4191,
1567
+ "step": 2170
1568
+ },
1569
+ {
1570
+ "epoch": 1.25,
1571
+ "grad_norm": 2.361792411282615,
1572
+ "learning_rate": 1.8626093922078614e-06,
1573
+ "loss": 0.4135,
1574
+ "step": 2180
1575
+ },
1576
+ {
1577
+ "epoch": 1.25,
1578
+ "grad_norm": 2.721607968377175,
1579
+ "learning_rate": 1.838486309650888e-06,
1580
+ "loss": 0.4221,
1581
+ "step": 2190
1582
+ },
1583
+ {
1584
+ "epoch": 1.26,
1585
+ "grad_norm": 2.6544964211718334,
1586
+ "learning_rate": 1.8144292766485588e-06,
1587
+ "loss": 0.411,
1588
+ "step": 2200
1589
+ },
1590
+ {
1591
+ "epoch": 1.26,
1592
+ "grad_norm": 2.3573667729775147,
1593
+ "learning_rate": 1.7904406952015258e-06,
1594
+ "loss": 0.4098,
1595
+ "step": 2210
1596
+ },
1597
+ {
1598
+ "epoch": 1.27,
1599
+ "grad_norm": 2.8700396902241354,
1600
+ "learning_rate": 1.7665229604758237e-06,
1601
+ "loss": 0.4163,
1602
+ "step": 2220
1603
+ },
1604
+ {
1605
+ "epoch": 1.28,
1606
+ "grad_norm": 3.1872115128374534,
1607
+ "learning_rate": 1.7426784605637153e-06,
1608
+ "loss": 0.4098,
1609
+ "step": 2230
1610
+ },
1611
+ {
1612
+ "epoch": 1.28,
1613
+ "grad_norm": 2.5720647224489075,
1614
+ "learning_rate": 1.7189095762452552e-06,
1615
+ "loss": 0.419,
1616
+ "step": 2240
1617
+ },
1618
+ {
1619
+ "epoch": 1.29,
1620
+ "grad_norm": 2.7721403217588594,
1621
+ "learning_rate": 1.6952186807505778e-06,
1622
+ "loss": 0.4201,
1623
+ "step": 2250
1624
+ },
1625
+ {
1626
+ "epoch": 1.29,
1627
+ "grad_norm": 3.3795392317416413,
1628
+ "learning_rate": 1.6716081395229374e-06,
1629
+ "loss": 0.4175,
1630
+ "step": 2260
1631
+ },
1632
+ {
1633
+ "epoch": 1.3,
1634
+ "grad_norm": 2.792505110856509,
1635
+ "learning_rate": 1.648080309982528e-06,
1636
+ "loss": 0.4047,
1637
+ "step": 2270
1638
+ },
1639
+ {
1640
+ "epoch": 1.3,
1641
+ "grad_norm": 2.5045890389309537,
1642
+ "learning_rate": 1.624637541291108e-06,
1643
+ "loss": 0.4139,
1644
+ "step": 2280
1645
+ },
1646
+ {
1647
+ "epoch": 1.31,
1648
+ "grad_norm": 2.5076429338592066,
1649
+ "learning_rate": 1.6012821741174394e-06,
1650
+ "loss": 0.4166,
1651
+ "step": 2290
1652
+ },
1653
+ {
1654
+ "epoch": 1.32,
1655
+ "grad_norm": 2.6078986626262983,
1656
+ "learning_rate": 1.5780165404035875e-06,
1657
+ "loss": 0.4128,
1658
+ "step": 2300
1659
+ },
1660
+ {
1661
+ "epoch": 1.32,
1662
+ "grad_norm": 2.5396271208193713,
1663
+ "learning_rate": 1.5548429631320804e-06,
1664
+ "loss": 0.4236,
1665
+ "step": 2310
1666
+ },
1667
+ {
1668
+ "epoch": 1.33,
1669
+ "grad_norm": 2.4770713027568325,
1670
+ "learning_rate": 1.5317637560939717e-06,
1671
+ "loss": 0.4105,
1672
+ "step": 2320
1673
+ },
1674
+ {
1675
+ "epoch": 1.33,
1676
+ "grad_norm": 2.7342907090878397,
1677
+ "learning_rate": 1.5087812236578158e-06,
1678
+ "loss": 0.4097,
1679
+ "step": 2330
1680
+ },
1681
+ {
1682
+ "epoch": 1.34,
1683
+ "grad_norm": 2.474686962501904,
1684
+ "learning_rate": 1.4858976605395858e-06,
1685
+ "loss": 0.4028,
1686
+ "step": 2340
1687
+ },
1688
+ {
1689
+ "epoch": 1.34,
1690
+ "grad_norm": 2.541050407831277,
1691
+ "learning_rate": 1.4631153515735566e-06,
1692
+ "loss": 0.4092,
1693
+ "step": 2350
1694
+ },
1695
+ {
1696
+ "epoch": 1.35,
1697
+ "grad_norm": 2.3319036310065915,
1698
+ "learning_rate": 1.4404365714841717e-06,
1699
+ "loss": 0.4095,
1700
+ "step": 2360
1701
+ },
1702
+ {
1703
+ "epoch": 1.36,
1704
+ "grad_norm": 2.8467247569785523,
1705
+ "learning_rate": 1.4178635846589195e-06,
1706
+ "loss": 0.404,
1707
+ "step": 2370
1708
+ },
1709
+ {
1710
+ "epoch": 1.36,
1711
+ "grad_norm": 2.6269760063806475,
1712
+ "learning_rate": 1.395398644922249e-06,
1713
+ "loss": 0.4165,
1714
+ "step": 2380
1715
+ },
1716
+ {
1717
+ "epoch": 1.37,
1718
+ "grad_norm": 2.7166759530722486,
1719
+ "learning_rate": 1.3730439953105242e-06,
1720
+ "loss": 0.4018,
1721
+ "step": 2390
1722
+ },
1723
+ {
1724
+ "epoch": 1.37,
1725
+ "grad_norm": 2.4008152588750478,
1726
+ "learning_rate": 1.350801867848076e-06,
1727
+ "loss": 0.4027,
1728
+ "step": 2400
1729
+ },
1730
+ {
1731
+ "epoch": 1.38,
1732
+ "grad_norm": 2.681524401478661,
1733
+ "learning_rate": 1.3286744833243373e-06,
1734
+ "loss": 0.4058,
1735
+ "step": 2410
1736
+ },
1737
+ {
1738
+ "epoch": 1.38,
1739
+ "grad_norm": 2.4832885931873934,
1740
+ "learning_rate": 1.306664051072108e-06,
1741
+ "loss": 0.4101,
1742
+ "step": 2420
1743
+ },
1744
+ {
1745
+ "epoch": 1.39,
1746
+ "grad_norm": 2.9652476007510726,
1747
+ "learning_rate": 1.2847727687469573e-06,
1748
+ "loss": 0.411,
1749
+ "step": 2430
1750
+ },
1751
+ {
1752
+ "epoch": 1.4,
1753
+ "grad_norm": 2.8095821252599187,
1754
+ "learning_rate": 1.2630028221078083e-06,
1755
+ "loss": 0.4131,
1756
+ "step": 2440
1757
+ },
1758
+ {
1759
+ "epoch": 1.4,
1760
+ "grad_norm": 2.5494893937849428,
1761
+ "learning_rate": 1.2413563847986814e-06,
1762
+ "loss": 0.4092,
1763
+ "step": 2450
1764
+ },
1765
+ {
1766
+ "epoch": 1.41,
1767
+ "grad_norm": 2.725138704030533,
1768
+ "learning_rate": 1.2198356181316793e-06,
1769
+ "loss": 0.4091,
1770
+ "step": 2460
1771
+ },
1772
+ {
1773
+ "epoch": 1.41,
1774
+ "grad_norm": 2.39868053795732,
1775
+ "learning_rate": 1.1984426708711804e-06,
1776
+ "loss": 0.3978,
1777
+ "step": 2470
1778
+ },
1779
+ {
1780
+ "epoch": 1.42,
1781
+ "grad_norm": 2.488515661168399,
1782
+ "learning_rate": 1.1771796790192963e-06,
1783
+ "loss": 0.403,
1784
+ "step": 2480
1785
+ },
1786
+ {
1787
+ "epoch": 1.42,
1788
+ "grad_norm": 2.5950371989879493,
1789
+ "learning_rate": 1.1560487656025985e-06,
1790
+ "loss": 0.3983,
1791
+ "step": 2490
1792
+ },
1793
+ {
1794
+ "epoch": 1.43,
1795
+ "grad_norm": 2.8164587473243325,
1796
+ "learning_rate": 1.1350520404601445e-06,
1797
+ "loss": 0.3969,
1798
+ "step": 2500
1799
+ },
1800
+ {
1801
+ "epoch": 1.43,
1802
+ "eval_loss": 0.48087671399116516,
1803
+ "eval_runtime": 531.108,
1804
+ "eval_samples_per_second": 23.315,
1805
+ "eval_steps_per_second": 0.729,
1806
+ "step": 2500
1807
+ },
1808
+ {
1809
+ "epoch": 1.44,
1810
+ "grad_norm": 2.6911969387062875,
1811
+ "learning_rate": 1.1141916000328152e-06,
1812
+ "loss": 0.4027,
1813
+ "step": 2510
1814
+ },
1815
+ {
1816
+ "epoch": 1.44,
1817
+ "grad_norm": 2.476764330966686,
1818
+ "learning_rate": 1.0934695271539975e-06,
1819
+ "loss": 0.4074,
1820
+ "step": 2520
1821
+ },
1822
+ {
1823
+ "epoch": 1.45,
1824
+ "grad_norm": 2.5619945448411605,
1825
+ "learning_rate": 1.0728878908416194e-06,
1826
+ "loss": 0.4083,
1827
+ "step": 2530
1828
+ },
1829
+ {
1830
+ "epoch": 1.45,
1831
+ "grad_norm": 2.9402161507985296,
1832
+ "learning_rate": 1.0524487460915675e-06,
1833
+ "loss": 0.3922,
1834
+ "step": 2540
1835
+ },
1836
+ {
1837
+ "epoch": 1.46,
1838
+ "grad_norm": 2.5346303173308335,
1839
+ "learning_rate": 1.0321541336725027e-06,
1840
+ "loss": 0.4034,
1841
+ "step": 2550
1842
+ },
1843
+ {
1844
+ "epoch": 1.46,
1845
+ "grad_norm": 2.3264995133931476,
1846
+ "learning_rate": 1.0120060799220976e-06,
1847
+ "loss": 0.3961,
1848
+ "step": 2560
1849
+ },
1850
+ {
1851
+ "epoch": 1.47,
1852
+ "grad_norm": 2.3682299479571474,
1853
+ "learning_rate": 9.920065965447167e-07,
1854
+ "loss": 0.407,
1855
+ "step": 2570
1856
+ },
1857
+ {
1858
+ "epoch": 1.48,
1859
+ "grad_norm": 2.4443777701467524,
1860
+ "learning_rate": 9.721576804105507e-07,
1861
+ "loss": 0.3965,
1862
+ "step": 2580
1863
+ },
1864
+ {
1865
+ "epoch": 1.48,
1866
+ "grad_norm": 2.5713687903588864,
1867
+ "learning_rate": 9.524613133562422e-07,
1868
+ "loss": 0.3996,
1869
+ "step": 2590
1870
+ },
1871
+ {
1872
+ "epoch": 1.49,
1873
+ "grad_norm": 2.4771454646234545,
1874
+ "learning_rate": 9.329194619870047e-07,
1875
+ "loss": 0.4024,
1876
+ "step": 2600
1877
+ },
1878
+ {
1879
+ "epoch": 1.49,
1880
+ "grad_norm": 2.6576827146080233,
1881
+ "learning_rate": 9.135340774802656e-07,
1882
+ "loss": 0.4005,
1883
+ "step": 2610
1884
+ },
1885
+ {
1886
+ "epoch": 1.5,
1887
+ "grad_norm": 2.5894019593645274,
1888
+ "learning_rate": 8.943070953908448e-07,
1889
+ "loss": 0.4028,
1890
+ "step": 2620
1891
+ },
1892
+ {
1893
+ "epoch": 1.51,
1894
+ "grad_norm": 2.514759035169968,
1895
+ "learning_rate": 8.752404354577052e-07,
1896
+ "loss": 0.4059,
1897
+ "step": 2630
1898
+ },
1899
+ {
1900
+ "epoch": 1.51,
1901
+ "grad_norm": 2.5607304476769044,
1902
+ "learning_rate": 8.563360014122648e-07,
1903
+ "loss": 0.4039,
1904
+ "step": 2640
1905
+ },
1906
+ {
1907
+ "epoch": 1.52,
1908
+ "grad_norm": 5.14637237359729,
1909
+ "learning_rate": 8.375956807883245e-07,
1910
+ "loss": 0.3901,
1911
+ "step": 2650
1912
+ },
1913
+ {
1914
+ "epoch": 1.52,
1915
+ "grad_norm": 2.2734216891063395,
1916
+ "learning_rate": 8.190213447336001e-07,
1917
+ "loss": 0.3899,
1918
+ "step": 2660
1919
+ },
1920
+ {
1921
+ "epoch": 1.53,
1922
+ "grad_norm": 2.471190008443679,
1923
+ "learning_rate": 8.006148478228986e-07,
1924
+ "loss": 0.4055,
1925
+ "step": 2670
1926
+ },
1927
+ {
1928
+ "epoch": 1.53,
1929
+ "grad_norm": 2.71999964571031,
1930
+ "learning_rate": 7.823780278729443e-07,
1931
+ "loss": 0.3961,
1932
+ "step": 2680
1933
+ },
1934
+ {
1935
+ "epoch": 1.54,
1936
+ "grad_norm": 2.418310205284732,
1937
+ "learning_rate": 7.643127057588811e-07,
1938
+ "loss": 0.3813,
1939
+ "step": 2690
1940
+ },
1941
+ {
1942
+ "epoch": 1.55,
1943
+ "grad_norm": 2.5665802451050044,
1944
+ "learning_rate": 7.464206852324624e-07,
1945
+ "loss": 0.3927,
1946
+ "step": 2700
1947
+ },
1948
+ {
1949
+ "epoch": 1.55,
1950
+ "grad_norm": 2.7770319022822343,
1951
+ "learning_rate": 7.287037527419605e-07,
1952
+ "loss": 0.3946,
1953
+ "step": 2710
1954
+ },
1955
+ {
1956
+ "epoch": 1.56,
1957
+ "grad_norm": 2.549475746375355,
1958
+ "learning_rate": 7.111636772537875e-07,
1959
+ "loss": 0.3915,
1960
+ "step": 2720
1961
+ },
1962
+ {
1963
+ "epoch": 1.56,
1964
+ "grad_norm": 2.688664419149691,
1965
+ "learning_rate": 6.938022100758782e-07,
1966
+ "loss": 0.4044,
1967
+ "step": 2730
1968
+ },
1969
+ {
1970
+ "epoch": 1.57,
1971
+ "grad_norm": 2.5993657832655788,
1972
+ "learning_rate": 6.766210846828256e-07,
1973
+ "loss": 0.3957,
1974
+ "step": 2740
1975
+ },
1976
+ {
1977
+ "epoch": 1.57,
1978
+ "grad_norm": 2.5309747823008215,
1979
+ "learning_rate": 6.596220165428002e-07,
1980
+ "loss": 0.3962,
1981
+ "step": 2750
1982
+ },
1983
+ {
1984
+ "epoch": 1.58,
1985
+ "grad_norm": 2.6144066056011517,
1986
+ "learning_rate": 6.428067029462693e-07,
1987
+ "loss": 0.3912,
1988
+ "step": 2760
1989
+ },
1990
+ {
1991
+ "epoch": 1.59,
1992
+ "grad_norm": 2.7527841475063357,
1993
+ "learning_rate": 6.261768228365267e-07,
1994
+ "loss": 0.3987,
1995
+ "step": 2770
1996
+ },
1997
+ {
1998
+ "epoch": 1.59,
1999
+ "grad_norm": 2.432371850837855,
2000
+ "learning_rate": 6.097340366420562e-07,
2001
+ "loss": 0.4078,
2002
+ "step": 2780
2003
+ },
2004
+ {
2005
+ "epoch": 1.6,
2006
+ "grad_norm": 2.625005423707898,
2007
+ "learning_rate": 5.934799861107507e-07,
2008
+ "loss": 0.3918,
2009
+ "step": 2790
2010
+ },
2011
+ {
2012
+ "epoch": 1.6,
2013
+ "grad_norm": 2.4813103577109326,
2014
+ "learning_rate": 5.774162941459802e-07,
2015
+ "loss": 0.3925,
2016
+ "step": 2800
2017
+ },
2018
+ {
2019
+ "epoch": 1.61,
2020
+ "grad_norm": 2.9410397977745215,
2021
+ "learning_rate": 5.615445646445586e-07,
2022
+ "loss": 0.3884,
2023
+ "step": 2810
2024
+ },
2025
+ {
2026
+ "epoch": 1.61,
2027
+ "grad_norm": 2.3507919061555858,
2028
+ "learning_rate": 5.45866382336599e-07,
2029
+ "loss": 0.389,
2030
+ "step": 2820
2031
+ },
2032
+ {
2033
+ "epoch": 1.62,
2034
+ "grad_norm": 2.419134938253293,
2035
+ "learning_rate": 5.303833126272837e-07,
2036
+ "loss": 0.3911,
2037
+ "step": 2830
2038
+ },
2039
+ {
2040
+ "epoch": 1.63,
2041
+ "grad_norm": 2.705274207526381,
2042
+ "learning_rate": 5.150969014405652e-07,
2043
+ "loss": 0.3806,
2044
+ "step": 2840
2045
+ },
2046
+ {
2047
+ "epoch": 1.63,
2048
+ "grad_norm": 2.818214976762935,
2049
+ "learning_rate": 5.000086750648125e-07,
2050
+ "loss": 0.3992,
2051
+ "step": 2850
2052
+ },
2053
+ {
2054
+ "epoch": 1.64,
2055
+ "grad_norm": 2.6412303699783144,
2056
+ "learning_rate": 4.851201400004133e-07,
2057
+ "loss": 0.3982,
2058
+ "step": 2860
2059
+ },
2060
+ {
2061
+ "epoch": 1.64,
2062
+ "grad_norm": 2.557106526975151,
2063
+ "learning_rate": 4.704327828093641e-07,
2064
+ "loss": 0.389,
2065
+ "step": 2870
2066
+ },
2067
+ {
2068
+ "epoch": 1.65,
2069
+ "grad_norm": 2.654458887909101,
2070
+ "learning_rate": 4.5594806996683256e-07,
2071
+ "loss": 0.3956,
2072
+ "step": 2880
2073
+ },
2074
+ {
2075
+ "epoch": 1.65,
2076
+ "grad_norm": 2.3963528740076225,
2077
+ "learning_rate": 4.4166744771474367e-07,
2078
+ "loss": 0.3923,
2079
+ "step": 2890
2080
+ },
2081
+ {
2082
+ "epoch": 1.66,
2083
+ "grad_norm": 2.6404819468490524,
2084
+ "learning_rate": 4.2759234191737443e-07,
2085
+ "loss": 0.3873,
2086
+ "step": 2900
2087
+ },
2088
+ {
2089
+ "epoch": 1.67,
2090
+ "grad_norm": 2.430447706914984,
2091
+ "learning_rate": 4.1372415791898794e-07,
2092
+ "loss": 0.3892,
2093
+ "step": 2910
2094
+ },
2095
+ {
2096
+ "epoch": 1.67,
2097
+ "grad_norm": 2.72283555848891,
2098
+ "learning_rate": 4.000642804035132e-07,
2099
+ "loss": 0.3972,
2100
+ "step": 2920
2101
+ },
2102
+ {
2103
+ "epoch": 1.68,
2104
+ "grad_norm": 48.58377587713292,
2105
+ "learning_rate": 3.8661407325629533e-07,
2106
+ "loss": 0.4079,
2107
+ "step": 2930
2108
+ },
2109
+ {
2110
+ "epoch": 1.68,
2111
+ "grad_norm": 2.624060213750708,
2112
+ "learning_rate": 3.7337487942790964e-07,
2113
+ "loss": 0.3892,
2114
+ "step": 2940
2115
+ },
2116
+ {
2117
+ "epoch": 1.69,
2118
+ "grad_norm": 2.9699815624549677,
2119
+ "learning_rate": 3.6034802080007814e-07,
2120
+ "loss": 0.3999,
2121
+ "step": 2950
2122
+ },
2123
+ {
2124
+ "epoch": 1.69,
2125
+ "grad_norm": 3.25458088141065,
2126
+ "learning_rate": 3.475347980536842e-07,
2127
+ "loss": 0.385,
2128
+ "step": 2960
2129
+ },
2130
+ {
2131
+ "epoch": 1.7,
2132
+ "grad_norm": 2.445550971601129,
2133
+ "learning_rate": 3.3493649053890325e-07,
2134
+ "loss": 0.3929,
2135
+ "step": 2970
2136
+ },
2137
+ {
2138
+ "epoch": 1.71,
2139
+ "grad_norm": 2.5114168114259887,
2140
+ "learning_rate": 3.225543561474667e-07,
2141
+ "loss": 0.3998,
2142
+ "step": 2980
2143
+ },
2144
+ {
2145
+ "epoch": 1.71,
2146
+ "grad_norm": 2.9780387761779252,
2147
+ "learning_rate": 3.1038963118706246e-07,
2148
+ "loss": 0.397,
2149
+ "step": 2990
2150
+ },
2151
+ {
2152
+ "epoch": 1.72,
2153
+ "grad_norm": 2.5876649071384636,
2154
+ "learning_rate": 2.984435302578992e-07,
2155
+ "loss": 0.3933,
2156
+ "step": 3000
2157
+ },
2158
+ {
2159
+ "epoch": 1.72,
2160
+ "eval_loss": 0.466826856136322,
2161
+ "eval_runtime": 531.3559,
2162
+ "eval_samples_per_second": 23.305,
2163
+ "eval_steps_per_second": 0.728,
2164
+ "step": 3000
2165
+ },
2166
+ {
2167
+ "epoch": 1.72,
2168
+ "grad_norm": 2.856546256466058,
2169
+ "learning_rate": 2.8671724613143106e-07,
2170
+ "loss": 0.3843,
2171
+ "step": 3010
2172
+ },
2173
+ {
2174
+ "epoch": 1.73,
2175
+ "grad_norm": 2.65010522081742,
2176
+ "learning_rate": 2.7521194963126387e-07,
2177
+ "loss": 0.3928,
2178
+ "step": 3020
2179
+ },
2180
+ {
2181
+ "epoch": 1.73,
2182
+ "grad_norm": 4.365159018177608,
2183
+ "learning_rate": 2.639287895162526e-07,
2184
+ "loss": 0.3842,
2185
+ "step": 3030
2186
+ },
2187
+ {
2188
+ "epoch": 1.74,
2189
+ "grad_norm": 2.5069662246327655,
2190
+ "learning_rate": 2.5286889236580485e-07,
2191
+ "loss": 0.3919,
2192
+ "step": 3040
2193
+ },
2194
+ {
2195
+ "epoch": 1.75,
2196
+ "grad_norm": 2.44175870329633,
2197
+ "learning_rate": 2.420333624673912e-07,
2198
+ "loss": 0.3858,
2199
+ "step": 3050
2200
+ },
2201
+ {
2202
+ "epoch": 1.75,
2203
+ "grad_norm": 2.408625264190103,
2204
+ "learning_rate": 2.314232817062939e-07,
2205
+ "loss": 0.3847,
2206
+ "step": 3060
2207
+ },
2208
+ {
2209
+ "epoch": 1.76,
2210
+ "grad_norm": 2.6673150680165176,
2211
+ "learning_rate": 2.2103970945757668e-07,
2212
+ "loss": 0.3912,
2213
+ "step": 3070
2214
+ },
2215
+ {
2216
+ "epoch": 1.76,
2217
+ "grad_norm": 3.416210049564414,
2218
+ "learning_rate": 2.1088368248031703e-07,
2219
+ "loss": 0.3887,
2220
+ "step": 3080
2221
+ },
2222
+ {
2223
+ "epoch": 1.77,
2224
+ "grad_norm": 2.4831114598380104,
2225
+ "learning_rate": 2.0095621481408535e-07,
2226
+ "loss": 0.3847,
2227
+ "step": 3090
2228
+ },
2229
+ {
2230
+ "epoch": 1.77,
2231
+ "grad_norm": 2.4518249271789823,
2232
+ "learning_rate": 1.9125829767770026e-07,
2233
+ "loss": 0.3869,
2234
+ "step": 3100
2235
+ },
2236
+ {
2237
+ "epoch": 1.78,
2238
+ "grad_norm": 2.431921711992356,
2239
+ "learning_rate": 1.817908993702555e-07,
2240
+ "loss": 0.4038,
2241
+ "step": 3110
2242
+ },
2243
+ {
2244
+ "epoch": 1.79,
2245
+ "grad_norm": 2.401086232330709,
2246
+ "learning_rate": 1.725549651744446e-07,
2247
+ "loss": 0.3896,
2248
+ "step": 3120
2249
+ },
2250
+ {
2251
+ "epoch": 1.79,
2252
+ "grad_norm": 2.8030599868787345,
2253
+ "learning_rate": 1.6355141726217132e-07,
2254
+ "loss": 0.4034,
2255
+ "step": 3130
2256
+ },
2257
+ {
2258
+ "epoch": 1.8,
2259
+ "grad_norm": 2.5196493937058126,
2260
+ "learning_rate": 1.547811546024816e-07,
2261
+ "loss": 0.3898,
2262
+ "step": 3140
2263
+ },
2264
+ {
2265
+ "epoch": 1.8,
2266
+ "grad_norm": 2.532168588674458,
2267
+ "learning_rate": 1.4624505287179818e-07,
2268
+ "loss": 0.3812,
2269
+ "step": 3150
2270
+ },
2271
+ {
2272
+ "epoch": 1.81,
2273
+ "grad_norm": 2.9831369418646254,
2274
+ "learning_rate": 1.3794396436649205e-07,
2275
+ "loss": 0.396,
2276
+ "step": 3160
2277
+ },
2278
+ {
2279
+ "epoch": 1.81,
2280
+ "grad_norm": 2.714395312518003,
2281
+ "learning_rate": 1.298787179177835e-07,
2282
+ "loss": 0.384,
2283
+ "step": 3170
2284
+ },
2285
+ {
2286
+ "epoch": 1.82,
2287
+ "grad_norm": 2.4865221680081038,
2288
+ "learning_rate": 1.2205011880898565e-07,
2289
+ "loss": 0.3841,
2290
+ "step": 3180
2291
+ },
2292
+ {
2293
+ "epoch": 1.83,
2294
+ "grad_norm": 2.4597701864630026,
2295
+ "learning_rate": 1.1445894869509866e-07,
2296
+ "loss": 0.3927,
2297
+ "step": 3190
2298
+ },
2299
+ {
2300
+ "epoch": 1.83,
2301
+ "grad_norm": 2.4358583132347906,
2302
+ "learning_rate": 1.0710596552476915e-07,
2303
+ "loss": 0.392,
2304
+ "step": 3200
2305
+ },
2306
+ {
2307
+ "epoch": 1.84,
2308
+ "grad_norm": 2.386461680357716,
2309
+ "learning_rate": 9.999190346460602e-08,
2310
+ "loss": 0.385,
2311
+ "step": 3210
2312
+ },
2313
+ {
2314
+ "epoch": 1.84,
2315
+ "grad_norm": 2.780440529108891,
2316
+ "learning_rate": 9.31174728258824e-08,
2317
+ "loss": 0.3833,
2318
+ "step": 3220
2319
+ },
2320
+ {
2321
+ "epoch": 1.85,
2322
+ "grad_norm": 2.474009294682335,
2323
+ "learning_rate": 8.648335999360935e-08,
2324
+ "loss": 0.3824,
2325
+ "step": 3230
2326
+ },
2327
+ {
2328
+ "epoch": 1.85,
2329
+ "grad_norm": 2.409537607728227,
2330
+ "learning_rate": 8.009022735800537e-08,
2331
+ "loss": 0.3888,
2332
+ "step": 3240
2333
+ },
2334
+ {
2335
+ "epoch": 1.86,
2336
+ "grad_norm": 2.4245907679021195,
2337
+ "learning_rate": 7.39387132483596e-08,
2338
+ "loss": 0.3856,
2339
+ "step": 3250
2340
+ },
2341
+ {
2342
+ "epoch": 1.87,
2343
+ "grad_norm": 2.692749484502572,
2344
+ "learning_rate": 6.802943186929617e-08,
2345
+ "loss": 0.3803,
2346
+ "step": 3260
2347
+ },
2348
+ {
2349
+ "epoch": 1.87,
2350
+ "grad_norm": 2.4379196195711215,
2351
+ "learning_rate": 6.236297323944679e-08,
2352
+ "loss": 0.3831,
2353
+ "step": 3270
2354
+ },
2355
+ {
2356
+ "epoch": 1.88,
2357
+ "grad_norm": 3.048508349939611,
2358
+ "learning_rate": 5.693990313254433e-08,
2359
+ "loss": 0.397,
2360
+ "step": 3280
2361
+ },
2362
+ {
2363
+ "epoch": 1.88,
2364
+ "grad_norm": 2.887339309122361,
2365
+ "learning_rate": 5.1760763020927143e-08,
2366
+ "loss": 0.3893,
2367
+ "step": 3290
2368
+ },
2369
+ {
2370
+ "epoch": 1.89,
2371
+ "grad_norm": 2.3788921808030072,
2372
+ "learning_rate": 4.682607002147899e-08,
2373
+ "loss": 0.3954,
2374
+ "step": 3300
2375
+ },
2376
+ {
2377
+ "epoch": 1.89,
2378
+ "grad_norm": 2.57063336475747,
2379
+ "learning_rate": 4.2136316843994775e-08,
2380
+ "loss": 0.3891,
2381
+ "step": 3310
2382
+ },
2383
+ {
2384
+ "epoch": 1.9,
2385
+ "grad_norm": 2.4304903487638803,
2386
+ "learning_rate": 3.769197174198658e-08,
2387
+ "loss": 0.3879,
2388
+ "step": 3320
2389
+ },
2390
+ {
2391
+ "epoch": 1.91,
2392
+ "grad_norm": 2.637983143379398,
2393
+ "learning_rate": 3.349347846593021e-08,
2394
+ "loss": 0.3946,
2395
+ "step": 3330
2396
+ },
2397
+ {
2398
+ "epoch": 1.91,
2399
+ "grad_norm": 2.3414639863414073,
2400
+ "learning_rate": 2.954125621895787e-08,
2401
+ "loss": 0.4075,
2402
+ "step": 3340
2403
+ },
2404
+ {
2405
+ "epoch": 1.92,
2406
+ "grad_norm": 2.528267339071513,
2407
+ "learning_rate": 2.5835699615002764e-08,
2408
+ "loss": 0.3892,
2409
+ "step": 3350
2410
+ },
2411
+ {
2412
+ "epoch": 1.92,
2413
+ "grad_norm": 2.7385307714857325,
2414
+ "learning_rate": 2.2377178639398368e-08,
2415
+ "loss": 0.3905,
2416
+ "step": 3360
2417
+ },
2418
+ {
2419
+ "epoch": 1.93,
2420
+ "grad_norm": 2.4232300548313512,
2421
+ "learning_rate": 1.9166038611937166e-08,
2422
+ "loss": 0.3924,
2423
+ "step": 3370
2424
+ },
2425
+ {
2426
+ "epoch": 1.93,
2427
+ "grad_norm": 2.5681127030737065,
2428
+ "learning_rate": 1.620260015239128e-08,
2429
+ "loss": 0.3973,
2430
+ "step": 3380
2431
+ },
2432
+ {
2433
+ "epoch": 1.94,
2434
+ "grad_norm": 2.514711802598368,
2435
+ "learning_rate": 1.3487159148500572e-08,
2436
+ "loss": 0.3837,
2437
+ "step": 3390
2438
+ },
2439
+ {
2440
+ "epoch": 1.95,
2441
+ "grad_norm": 2.8751043735648554,
2442
+ "learning_rate": 1.1019986726427955e-08,
2443
+ "loss": 0.3877,
2444
+ "step": 3400
2445
+ },
2446
+ {
2447
+ "epoch": 1.95,
2448
+ "grad_norm": 2.526450637506157,
2449
+ "learning_rate": 8.80132922369048e-09,
2450
+ "loss": 0.3747,
2451
+ "step": 3410
2452
+ },
2453
+ {
2454
+ "epoch": 1.96,
2455
+ "grad_norm": 2.538792948888959,
2456
+ "learning_rate": 6.831408164561792e-09,
2457
+ "loss": 0.3864,
2458
+ "step": 3420
2459
+ },
2460
+ {
2461
+ "epoch": 1.96,
2462
+ "grad_norm": 2.5203237951269233,
2463
+ "learning_rate": 5.1104202379553825e-09,
2464
+ "loss": 0.3909,
2465
+ "step": 3430
2466
+ },
2467
+ {
2468
+ "epoch": 1.97,
2469
+ "grad_norm": 2.4438999348564607,
2470
+ "learning_rate": 3.6385372777839046e-09,
2471
+ "loss": 0.3898,
2472
+ "step": 3440
2473
+ },
2474
+ {
2475
+ "epoch": 1.97,
2476
+ "grad_norm": 2.552607870699825,
2477
+ "learning_rate": 2.415906245804289e-09,
2478
+ "loss": 0.3792,
2479
+ "step": 3450
2480
+ },
2481
+ {
2482
+ "epoch": 1.98,
2483
+ "grad_norm": 2.601255703179851,
2484
+ "learning_rate": 1.4426492169430929e-09,
2485
+ "loss": 0.3942,
2486
+ "step": 3460
2487
+ },
2488
+ {
2489
+ "epoch": 1.99,
2490
+ "grad_norm": 2.4765130524935453,
2491
+ "learning_rate": 7.188633671079137e-10,
2492
+ "loss": 0.3937,
2493
+ "step": 3470
2494
+ },
2495
+ {
2496
+ "epoch": 1.99,
2497
+ "grad_norm": 2.4315037049643573,
2498
+ "learning_rate": 2.4462096348515373e-10,
2499
+ "loss": 0.3962,
2500
+ "step": 3480
2501
+ },
2502
+ {
2503
+ "epoch": 2.0,
2504
+ "grad_norm": 2.3352186798660193,
2505
+ "learning_rate": 1.996935732384575e-11,
2506
+ "loss": 0.3873,
2507
+ "step": 3490
2508
+ },
2509
+ {
2510
+ "epoch": 2.0,
2511
+ "step": 3494,
2512
+ "total_flos": 731467827118080.0,
2513
+ "train_loss": 0.5086251636130099,
2514
+ "train_runtime": 42324.6962,
2515
+ "train_samples_per_second": 5.284,
2516
+ "train_steps_per_second": 0.083
2517
+ }
2518
+ ],
2519
+ "logging_steps": 10,
2520
+ "max_steps": 3494,
2521
+ "num_input_tokens_seen": 0,
2522
+ "num_train_epochs": 2,
2523
+ "save_steps": 500,
2524
+ "total_flos": 731467827118080.0,
2525
+ "train_batch_size": 8,
2526
+ "trial_name": null,
2527
+ "trial_params": null
2528
+ }