--- base_model: jinaai/jina-embeddings-v2-base-en datasets: - allenai/c4 language: en license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - mteb - llama-cpp - gguf-my-repo inference: false model-index: - name: jina-embedding-b-en-v2 results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 74.73134328358209 - type: ap value: 37.765427081831035 - type: f1 value: 68.79367444339518 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 88.544275 - type: ap value: 84.61328675662887 - type: f1 value: 88.51879035862375 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 45.263999999999996 - type: f1 value: 43.778759656699435 - task: type: Retrieval dataset: name: MTEB ArguAna type: arguana config: default split: test revision: None metrics: - type: map_at_1 value: 21.693 - type: map_at_10 value: 35.487 - type: map_at_100 value: 36.862 - type: map_at_1000 value: 36.872 - type: map_at_3 value: 30.049999999999997 - type: map_at_5 value: 32.966 - type: mrr_at_1 value: 21.977 - type: mrr_at_10 value: 35.565999999999995 - type: mrr_at_100 value: 36.948 - type: mrr_at_1000 value: 36.958 - type: mrr_at_3 value: 30.121 - type: mrr_at_5 value: 33.051 - type: ndcg_at_1 value: 21.693 - type: ndcg_at_10 value: 44.181 - type: ndcg_at_100 value: 49.982 - type: ndcg_at_1000 value: 50.233000000000004 - type: ndcg_at_3 value: 32.830999999999996 - type: ndcg_at_5 value: 38.080000000000005 - type: precision_at_1 value: 21.693 - type: precision_at_10 value: 7.248 - type: precision_at_100 value: 0.9769999999999999 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 13.632 - type: precision_at_5 value: 10.725 - type: recall_at_1 value: 21.693 - type: recall_at_10 value: 72.475 - type: recall_at_100 value: 97.653 - type: recall_at_1000 value: 99.57300000000001 - type: recall_at_3 value: 40.896 - type: recall_at_5 value: 53.627 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 45.39242428696777 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 36.675626784714 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 62.247725694904034 - type: mrr value: 74.91359978894604 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 82.68003802970496 - type: cos_sim_spearman value: 81.23438110096286 - type: euclidean_pearson value: 81.87462986142582 - type: euclidean_spearman value: 81.23438110096286 - type: manhattan_pearson value: 81.61162566600755 - type: manhattan_spearman value: 81.11329400456184 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 84.01298701298701 - type: f1 value: 83.31690714969382 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 37.050108150972086 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 30.15731442819715 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: BeIR/cqadupstack config: default split: test revision: None metrics: - type: map_at_1 value: 31.391999999999996 - type: map_at_10 value: 42.597 - type: map_at_100 value: 44.07 - type: map_at_1000 value: 44.198 - type: map_at_3 value: 38.957 - type: map_at_5 value: 40.961 - type: mrr_at_1 value: 37.196 - type: mrr_at_10 value: 48.152 - type: mrr_at_100 value: 48.928 - type: mrr_at_1000 value: 48.964999999999996 - type: mrr_at_3 value: 45.446 - type: mrr_at_5 value: 47.205999999999996 - type: ndcg_at_1 value: 37.196 - type: ndcg_at_10 value: 49.089 - type: ndcg_at_100 value: 54.471000000000004 - type: ndcg_at_1000 value: 56.385 - type: ndcg_at_3 value: 43.699 - type: ndcg_at_5 value: 46.22 - type: precision_at_1 value: 37.196 - type: precision_at_10 value: 9.313 - type: precision_at_100 value: 1.478 - type: precision_at_1000 value: 0.198 - type: precision_at_3 value: 20.839 - type: precision_at_5 value: 14.936 - type: recall_at_1 value: 31.391999999999996 - type: recall_at_10 value: 61.876 - type: recall_at_100 value: 84.214 - type: recall_at_1000 value: 95.985 - type: recall_at_3 value: 46.6 - type: recall_at_5 value: 53.588 - type: map_at_1 value: 29.083 - type: map_at_10 value: 38.812999999999995 - type: map_at_100 value: 40.053 - type: map_at_1000 value: 40.188 - type: map_at_3 value: 36.111 - type: map_at_5 value: 37.519000000000005 - type: mrr_at_1 value: 36.497 - type: mrr_at_10 value: 44.85 - type: mrr_at_100 value: 45.546 - type: mrr_at_1000 value: 45.593 - type: mrr_at_3 value: 42.686 - type: mrr_at_5 value: 43.909 - type: ndcg_at_1 value: 36.497 - type: ndcg_at_10 value: 44.443 - type: ndcg_at_100 value: 48.979 - type: ndcg_at_1000 value: 51.154999999999994 - type: ndcg_at_3 value: 40.660000000000004 - type: ndcg_at_5 value: 42.193000000000005 - type: precision_at_1 value: 36.497 - type: precision_at_10 value: 8.433 - type: precision_at_100 value: 1.369 - type: precision_at_1000 value: 0.185 - type: precision_at_3 value: 19.894000000000002 - type: precision_at_5 value: 13.873 - type: recall_at_1 value: 29.083 - type: recall_at_10 value: 54.313 - type: recall_at_100 value: 73.792 - type: recall_at_1000 value: 87.629 - type: recall_at_3 value: 42.257 - type: recall_at_5 value: 47.066 - type: map_at_1 value: 38.556000000000004 - type: map_at_10 value: 50.698 - type: map_at_100 value: 51.705 - type: map_at_1000 value: 51.768 - type: map_at_3 value: 47.848 - type: map_at_5 value: 49.358000000000004 - type: mrr_at_1 value: 43.95 - type: mrr_at_10 value: 54.191 - type: mrr_at_100 value: 54.852999999999994 - type: mrr_at_1000 value: 54.885 - type: mrr_at_3 value: 51.954 - type: mrr_at_5 value: 53.13 - type: ndcg_at_1 value: 43.95 - type: ndcg_at_10 value: 56.516 - type: ndcg_at_100 value: 60.477000000000004 - type: ndcg_at_1000 value: 61.746 - type: ndcg_at_3 value: 51.601 - type: ndcg_at_5 value: 53.795 - type: precision_at_1 value: 43.95 - type: precision_at_10 value: 9.009 - type: precision_at_100 value: 1.189 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 22.989 - type: precision_at_5 value: 15.473 - type: recall_at_1 value: 38.556000000000004 - type: recall_at_10 value: 70.159 - type: recall_at_100 value: 87.132 - type: recall_at_1000 value: 96.16 - type: recall_at_3 value: 56.906 - type: recall_at_5 value: 62.332 - type: map_at_1 value: 24.238 - type: map_at_10 value: 32.5 - type: map_at_100 value: 33.637 - type: map_at_1000 value: 33.719 - type: map_at_3 value: 30.026999999999997 - type: map_at_5 value: 31.555 - type: mrr_at_1 value: 26.328000000000003 - type: mrr_at_10 value: 34.44 - type: mrr_at_100 value: 35.455999999999996 - type: mrr_at_1000 value: 35.521 - type: mrr_at_3 value: 32.034 - type: mrr_at_5 value: 33.565 - type: ndcg_at_1 value: 26.328000000000003 - type: ndcg_at_10 value: 37.202 - type: ndcg_at_100 value: 42.728 - type: ndcg_at_1000 value: 44.792 - type: ndcg_at_3 value: 32.368 - type: ndcg_at_5 value: 35.008 - type: precision_at_1 value: 26.328000000000003 - type: precision_at_10 value: 5.7059999999999995 - type: precision_at_100 value: 0.8880000000000001 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 13.672 - type: precision_at_5 value: 9.74 - type: recall_at_1 value: 24.238 - type: recall_at_10 value: 49.829 - type: recall_at_100 value: 75.21 - type: recall_at_1000 value: 90.521 - type: recall_at_3 value: 36.867 - type: recall_at_5 value: 43.241 - type: map_at_1 value: 15.378 - type: map_at_10 value: 22.817999999999998 - type: map_at_100 value: 23.977999999999998 - type: map_at_1000 value: 24.108 - type: map_at_3 value: 20.719 - type: map_at_5 value: 21.889 - type: mrr_at_1 value: 19.03 - type: mrr_at_10 value: 27.022000000000002 - type: mrr_at_100 value: 28.011999999999997 - type: mrr_at_1000 value: 28.096 - type: mrr_at_3 value: 24.855 - type: mrr_at_5 value: 26.029999999999998 - type: ndcg_at_1 value: 19.03 - type: ndcg_at_10 value: 27.526 - type: ndcg_at_100 value: 33.040000000000006 - type: ndcg_at_1000 value: 36.187000000000005 - type: ndcg_at_3 value: 23.497 - type: ndcg_at_5 value: 25.334 - type: precision_at_1 value: 19.03 - type: precision_at_10 value: 4.963 - type: precision_at_100 value: 0.893 - type: precision_at_1000 value: 0.13 - type: precision_at_3 value: 11.360000000000001 - type: precision_at_5 value: 8.134 - type: recall_at_1 value: 15.378 - type: recall_at_10 value: 38.061 - type: recall_at_100 value: 61.754 - type: recall_at_1000 value: 84.259 - type: recall_at_3 value: 26.788 - type: recall_at_5 value: 31.326999999999998 - type: map_at_1 value: 27.511999999999997 - type: map_at_10 value: 37.429 - type: map_at_100 value: 38.818000000000005 - type: map_at_1000 value: 38.924 - type: map_at_3 value: 34.625 - type: map_at_5 value: 36.064 - type: mrr_at_1 value: 33.300999999999995 - type: mrr_at_10 value: 43.036 - type: mrr_at_100 value: 43.894 - type: mrr_at_1000 value: 43.936 - type: mrr_at_3 value: 40.825 - type: mrr_at_5 value: 42.028 - type: ndcg_at_1 value: 33.300999999999995 - type: ndcg_at_10 value: 43.229 - type: ndcg_at_100 value: 48.992000000000004 - type: ndcg_at_1000 value: 51.02100000000001 - type: ndcg_at_3 value: 38.794000000000004 - type: ndcg_at_5 value: 40.65 - type: precision_at_1 value: 33.300999999999995 - type: precision_at_10 value: 7.777000000000001 - type: precision_at_100 value: 1.269 - type: precision_at_1000 value: 0.163 - type: precision_at_3 value: 18.351 - type: precision_at_5 value: 12.762 - type: recall_at_1 value: 27.511999999999997 - type: recall_at_10 value: 54.788000000000004 - type: recall_at_100 value: 79.105 - type: recall_at_1000 value: 92.49199999999999 - type: recall_at_3 value: 41.924 - type: recall_at_5 value: 47.026 - type: map_at_1 value: 24.117 - type: map_at_10 value: 33.32 - type: map_at_100 value: 34.677 - type: map_at_1000 value: 34.78 - type: map_at_3 value: 30.233999999999998 - type: map_at_5 value: 31.668000000000003 - type: mrr_at_1 value: 29.566 - type: mrr_at_10 value: 38.244 - type: mrr_at_100 value: 39.245000000000005 - type: mrr_at_1000 value: 39.296 - type: mrr_at_3 value: 35.864000000000004 - type: mrr_at_5 value: 36.919999999999995 - type: ndcg_at_1 value: 29.566 - type: ndcg_at_10 value: 39.127 - type: ndcg_at_100 value: 44.989000000000004 - type: ndcg_at_1000 value: 47.189 - type: ndcg_at_3 value: 34.039 - type: ndcg_at_5 value: 35.744 - type: precision_at_1 value: 29.566 - type: precision_at_10 value: 7.385999999999999 - type: precision_at_100 value: 1.204 - type: precision_at_1000 value: 0.158 - type: precision_at_3 value: 16.286 - type: precision_at_5 value: 11.484 - type: recall_at_1 value: 24.117 - type: recall_at_10 value: 51.559999999999995 - type: recall_at_100 value: 77.104 - type: recall_at_1000 value: 91.79899999999999 - type: recall_at_3 value: 36.82 - type: recall_at_5 value: 41.453 - type: map_at_1 value: 25.17625 - type: map_at_10 value: 34.063916666666664 - type: map_at_100 value: 35.255500000000005 - type: map_at_1000 value: 35.37275 - type: map_at_3 value: 31.351666666666667 - type: map_at_5 value: 32.80608333333333 - type: mrr_at_1 value: 29.59783333333333 - type: mrr_at_10 value: 38.0925 - type: mrr_at_100 value: 38.957249999999995 - type: mrr_at_1000 value: 39.01608333333333 - type: mrr_at_3 value: 35.77625 - type: mrr_at_5 value: 37.04991666666667 - type: ndcg_at_1 value: 29.59783333333333 - type: ndcg_at_10 value: 39.343666666666664 - type: ndcg_at_100 value: 44.488249999999994 - type: ndcg_at_1000 value: 46.83358333333334 - type: ndcg_at_3 value: 34.69708333333333 - type: ndcg_at_5 value: 36.75075 - type: precision_at_1 value: 29.59783333333333 - type: precision_at_10 value: 6.884083333333332 - type: precision_at_100 value: 1.114 - type: precision_at_1000 value: 0.15108333333333332 - type: precision_at_3 value: 15.965250000000003 - type: precision_at_5 value: 11.246500000000001 - type: recall_at_1 value: 25.17625 - type: recall_at_10 value: 51.015999999999984 - type: recall_at_100 value: 73.60174999999998 - type: recall_at_1000 value: 89.849 - type: recall_at_3 value: 37.88399999999999 - type: recall_at_5 value: 43.24541666666666 - type: map_at_1 value: 24.537 - type: map_at_10 value: 31.081999999999997 - type: map_at_100 value: 32.042 - type: map_at_1000 value: 32.141 - type: map_at_3 value: 29.137 - type: map_at_5 value: 30.079 - type: mrr_at_1 value: 27.454 - type: mrr_at_10 value: 33.694 - type: mrr_at_100 value: 34.579 - type: mrr_at_1000 value: 34.649 - type: mrr_at_3 value: 32.004 - type: mrr_at_5 value: 32.794000000000004 - type: ndcg_at_1 value: 27.454 - type: ndcg_at_10 value: 34.915 - type: ndcg_at_100 value: 39.641 - type: ndcg_at_1000 value: 42.105 - type: ndcg_at_3 value: 31.276 - type: ndcg_at_5 value: 32.65 - type: precision_at_1 value: 27.454 - type: precision_at_10 value: 5.337 - type: precision_at_100 value: 0.8250000000000001 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 13.241 - type: precision_at_5 value: 8.895999999999999 - type: recall_at_1 value: 24.537 - type: recall_at_10 value: 44.324999999999996 - type: recall_at_100 value: 65.949 - type: recall_at_1000 value: 84.017 - type: recall_at_3 value: 33.857 - type: recall_at_5 value: 37.316 - type: map_at_1 value: 17.122 - type: map_at_10 value: 24.32 - type: map_at_100 value: 25.338 - type: map_at_1000 value: 25.462 - type: map_at_3 value: 22.064 - type: map_at_5 value: 23.322000000000003 - type: mrr_at_1 value: 20.647 - type: mrr_at_10 value: 27.858 - type: mrr_at_100 value: 28.743999999999996 - type: mrr_at_1000 value: 28.819 - type: mrr_at_3 value: 25.769 - type: mrr_at_5 value: 26.964 - type: ndcg_at_1 value: 20.647 - type: ndcg_at_10 value: 28.849999999999998 - type: ndcg_at_100 value: 33.849000000000004 - type: ndcg_at_1000 value: 36.802 - type: ndcg_at_3 value: 24.799 - type: ndcg_at_5 value: 26.682 - type: precision_at_1 value: 20.647 - type: precision_at_10 value: 5.2170000000000005 - type: precision_at_100 value: 0.906 - type: precision_at_1000 value: 0.134 - type: precision_at_3 value: 11.769 - type: precision_at_5 value: 8.486 - type: recall_at_1 value: 17.122 - type: recall_at_10 value: 38.999 - type: recall_at_100 value: 61.467000000000006 - type: recall_at_1000 value: 82.716 - type: recall_at_3 value: 27.601 - type: recall_at_5 value: 32.471 - type: map_at_1 value: 24.396 - type: map_at_10 value: 33.415 - type: map_at_100 value: 34.521 - type: map_at_1000 value: 34.631 - type: map_at_3 value: 30.703999999999997 - type: map_at_5 value: 32.166 - type: mrr_at_1 value: 28.825 - type: mrr_at_10 value: 37.397000000000006 - type: mrr_at_100 value: 38.286 - type: mrr_at_1000 value: 38.346000000000004 - type: mrr_at_3 value: 35.028 - type: mrr_at_5 value: 36.32 - type: ndcg_at_1 value: 28.825 - type: ndcg_at_10 value: 38.656 - type: ndcg_at_100 value: 43.856 - type: ndcg_at_1000 value: 46.31 - type: ndcg_at_3 value: 33.793 - type: ndcg_at_5 value: 35.909 - type: precision_at_1 value: 28.825 - type: precision_at_10 value: 6.567 - type: precision_at_100 value: 1.0330000000000001 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 15.516 - type: precision_at_5 value: 10.914 - type: recall_at_1 value: 24.396 - type: recall_at_10 value: 50.747 - type: recall_at_100 value: 73.477 - type: recall_at_1000 value: 90.801 - type: recall_at_3 value: 37.1 - type: recall_at_5 value: 42.589 - type: map_at_1 value: 25.072 - type: map_at_10 value: 34.307 - type: map_at_100 value: 35.725 - type: map_at_1000 value: 35.943999999999996 - type: map_at_3 value: 30.906 - type: map_at_5 value: 32.818000000000005 - type: mrr_at_1 value: 29.644 - type: mrr_at_10 value: 38.673 - type: mrr_at_100 value: 39.459 - type: mrr_at_1000 value: 39.527 - type: mrr_at_3 value: 35.771 - type: mrr_at_5 value: 37.332 - type: ndcg_at_1 value: 29.644 - type: ndcg_at_10 value: 40.548 - type: ndcg_at_100 value: 45.678999999999995 - type: ndcg_at_1000 value: 48.488 - type: ndcg_at_3 value: 34.887 - type: ndcg_at_5 value: 37.543 - type: precision_at_1 value: 29.644 - type: precision_at_10 value: 7.688000000000001 - type: precision_at_100 value: 1.482 - type: precision_at_1000 value: 0.23600000000000002 - type: precision_at_3 value: 16.206 - type: precision_at_5 value: 12.016 - type: recall_at_1 value: 25.072 - type: recall_at_10 value: 53.478 - type: recall_at_100 value: 76.07300000000001 - type: recall_at_1000 value: 93.884 - type: recall_at_3 value: 37.583 - type: recall_at_5 value: 44.464 - type: map_at_1 value: 20.712 - type: map_at_10 value: 27.467999999999996 - type: map_at_100 value: 28.502 - type: map_at_1000 value: 28.610000000000003 - type: map_at_3 value: 24.887999999999998 - type: map_at_5 value: 26.273999999999997 - type: mrr_at_1 value: 22.736 - type: mrr_at_10 value: 29.553 - type: mrr_at_100 value: 30.485 - type: mrr_at_1000 value: 30.56 - type: mrr_at_3 value: 27.078999999999997 - type: mrr_at_5 value: 28.401 - type: ndcg_at_1 value: 22.736 - type: ndcg_at_10 value: 32.023 - type: ndcg_at_100 value: 37.158 - type: ndcg_at_1000 value: 39.823 - type: ndcg_at_3 value: 26.951999999999998 - type: ndcg_at_5 value: 29.281000000000002 - type: precision_at_1 value: 22.736 - type: precision_at_10 value: 5.213 - type: precision_at_100 value: 0.832 - type: precision_at_1000 value: 0.116 - type: precision_at_3 value: 11.459999999999999 - type: precision_at_5 value: 8.244 - type: recall_at_1 value: 20.712 - type: recall_at_10 value: 44.057 - type: recall_at_100 value: 67.944 - type: recall_at_1000 value: 87.925 - type: recall_at_3 value: 30.305 - type: recall_at_5 value: 36.071999999999996 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: climate-fever config: default split: test revision: None metrics: - type: map_at_1 value: 10.181999999999999 - type: map_at_10 value: 16.66 - type: map_at_100 value: 18.273 - type: map_at_1000 value: 18.45 - type: map_at_3 value: 14.141 - type: map_at_5 value: 15.455 - type: mrr_at_1 value: 22.15 - type: mrr_at_10 value: 32.062000000000005 - type: mrr_at_100 value: 33.116 - type: mrr_at_1000 value: 33.168 - type: mrr_at_3 value: 28.827 - type: mrr_at_5 value: 30.892999999999997 - type: ndcg_at_1 value: 22.15 - type: ndcg_at_10 value: 23.532 - type: ndcg_at_100 value: 30.358 - type: ndcg_at_1000 value: 33.783 - type: ndcg_at_3 value: 19.222 - type: ndcg_at_5 value: 20.919999999999998 - type: precision_at_1 value: 22.15 - type: precision_at_10 value: 7.185999999999999 - type: precision_at_100 value: 1.433 - type: precision_at_1000 value: 0.207 - type: precision_at_3 value: 13.941 - type: precision_at_5 value: 10.906 - type: recall_at_1 value: 10.181999999999999 - type: recall_at_10 value: 28.104000000000003 - type: recall_at_100 value: 51.998999999999995 - type: recall_at_1000 value: 71.311 - type: recall_at_3 value: 17.698 - type: recall_at_5 value: 22.262999999999998 - task: type: Retrieval dataset: name: MTEB DBPedia type: dbpedia-entity config: default split: test revision: None metrics: - type: map_at_1 value: 6.669 - type: map_at_10 value: 15.552 - type: map_at_100 value: 21.865000000000002 - type: map_at_1000 value: 23.268 - type: map_at_3 value: 11.309 - type: map_at_5 value: 13.084000000000001 - type: mrr_at_1 value: 55.50000000000001 - type: mrr_at_10 value: 66.46600000000001 - type: mrr_at_100 value: 66.944 - type: mrr_at_1000 value: 66.956 - type: mrr_at_3 value: 64.542 - type: mrr_at_5 value: 65.717 - type: ndcg_at_1 value: 44.75 - type: ndcg_at_10 value: 35.049 - type: ndcg_at_100 value: 39.073 - type: ndcg_at_1000 value: 46.208 - type: ndcg_at_3 value: 39.525 - type: ndcg_at_5 value: 37.156 - type: precision_at_1 value: 55.50000000000001 - type: precision_at_10 value: 27.800000000000004 - type: precision_at_100 value: 9.013 - type: precision_at_1000 value: 1.8800000000000001 - type: precision_at_3 value: 42.667 - type: precision_at_5 value: 36.0 - type: recall_at_1 value: 6.669 - type: recall_at_10 value: 21.811 - type: recall_at_100 value: 45.112 - type: recall_at_1000 value: 67.806 - type: recall_at_3 value: 13.373 - type: recall_at_5 value: 16.615 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 48.769999999999996 - type: f1 value: 42.91448356376592 - task: type: Retrieval dataset: name: MTEB FEVER type: fever config: default split: test revision: None metrics: - type: map_at_1 value: 54.013 - type: map_at_10 value: 66.239 - type: map_at_100 value: 66.62599999999999 - type: map_at_1000 value: 66.644 - type: map_at_3 value: 63.965 - type: map_at_5 value: 65.45400000000001 - type: mrr_at_1 value: 58.221000000000004 - type: mrr_at_10 value: 70.43700000000001 - type: mrr_at_100 value: 70.744 - type: mrr_at_1000 value: 70.75099999999999 - type: mrr_at_3 value: 68.284 - type: mrr_at_5 value: 69.721 - type: ndcg_at_1 value: 58.221000000000004 - type: ndcg_at_10 value: 72.327 - type: ndcg_at_100 value: 73.953 - type: ndcg_at_1000 value: 74.312 - type: ndcg_at_3 value: 68.062 - type: ndcg_at_5 value: 70.56400000000001 - type: precision_at_1 value: 58.221000000000004 - type: precision_at_10 value: 9.521 - type: precision_at_100 value: 1.045 - type: precision_at_1000 value: 0.109 - type: precision_at_3 value: 27.348 - type: precision_at_5 value: 17.794999999999998 - type: recall_at_1 value: 54.013 - type: recall_at_10 value: 86.957 - type: recall_at_100 value: 93.911 - type: recall_at_1000 value: 96.38 - type: recall_at_3 value: 75.555 - type: recall_at_5 value: 81.671 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: fiqa config: default split: test revision: None metrics: - type: map_at_1 value: 21.254 - type: map_at_10 value: 33.723 - type: map_at_100 value: 35.574 - type: map_at_1000 value: 35.730000000000004 - type: map_at_3 value: 29.473 - type: map_at_5 value: 31.543 - type: mrr_at_1 value: 41.358 - type: mrr_at_10 value: 49.498 - type: mrr_at_100 value: 50.275999999999996 - type: mrr_at_1000 value: 50.308 - type: mrr_at_3 value: 47.016000000000005 - type: mrr_at_5 value: 48.336 - type: ndcg_at_1 value: 41.358 - type: ndcg_at_10 value: 41.579 - type: ndcg_at_100 value: 48.455 - type: ndcg_at_1000 value: 51.165000000000006 - type: ndcg_at_3 value: 37.681 - type: ndcg_at_5 value: 38.49 - type: precision_at_1 value: 41.358 - type: precision_at_10 value: 11.543000000000001 - type: precision_at_100 value: 1.87 - type: precision_at_1000 value: 0.23600000000000002 - type: precision_at_3 value: 24.743000000000002 - type: precision_at_5 value: 17.994 - type: recall_at_1 value: 21.254 - type: recall_at_10 value: 48.698 - type: recall_at_100 value: 74.588 - type: recall_at_1000 value: 91.00200000000001 - type: recall_at_3 value: 33.939 - type: recall_at_5 value: 39.367000000000004 - task: type: Retrieval dataset: name: MTEB HotpotQA type: hotpotqa config: default split: test revision: None metrics: - type: map_at_1 value: 35.922 - type: map_at_10 value: 52.32599999999999 - type: map_at_100 value: 53.18000000000001 - type: map_at_1000 value: 53.245 - type: map_at_3 value: 49.294 - type: map_at_5 value: 51.202999999999996 - type: mrr_at_1 value: 71.843 - type: mrr_at_10 value: 78.24600000000001 - type: mrr_at_100 value: 78.515 - type: mrr_at_1000 value: 78.527 - type: mrr_at_3 value: 77.17500000000001 - type: mrr_at_5 value: 77.852 - type: ndcg_at_1 value: 71.843 - type: ndcg_at_10 value: 61.379 - type: ndcg_at_100 value: 64.535 - type: ndcg_at_1000 value: 65.888 - type: ndcg_at_3 value: 56.958 - type: ndcg_at_5 value: 59.434 - type: precision_at_1 value: 71.843 - type: precision_at_10 value: 12.686 - type: precision_at_100 value: 1.517 - type: precision_at_1000 value: 0.16999999999999998 - type: precision_at_3 value: 35.778 - type: precision_at_5 value: 23.422 - type: recall_at_1 value: 35.922 - type: recall_at_10 value: 63.43 - type: recall_at_100 value: 75.868 - type: recall_at_1000 value: 84.88900000000001 - type: recall_at_3 value: 53.666000000000004 - type: recall_at_5 value: 58.555 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 79.4408 - type: ap value: 73.52820871620366 - type: f1 value: 79.36240238685001 - task: type: Retrieval dataset: name: MTEB MSMARCO type: msmarco config: default split: dev revision: None metrics: - type: map_at_1 value: 21.826999999999998 - type: map_at_10 value: 34.04 - type: map_at_100 value: 35.226 - type: map_at_1000 value: 35.275 - type: map_at_3 value: 30.165999999999997 - type: map_at_5 value: 32.318000000000005 - type: mrr_at_1 value: 22.464000000000002 - type: mrr_at_10 value: 34.631 - type: mrr_at_100 value: 35.752 - type: mrr_at_1000 value: 35.795 - type: mrr_at_3 value: 30.798 - type: mrr_at_5 value: 32.946999999999996 - type: ndcg_at_1 value: 22.464000000000002 - type: ndcg_at_10 value: 40.919 - type: ndcg_at_100 value: 46.632 - type: ndcg_at_1000 value: 47.833 - type: ndcg_at_3 value: 32.992 - type: ndcg_at_5 value: 36.834 - type: precision_at_1 value: 22.464000000000002 - type: precision_at_10 value: 6.494 - type: precision_at_100 value: 0.9369999999999999 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.021 - type: precision_at_5 value: 10.347000000000001 - type: recall_at_1 value: 21.826999999999998 - type: recall_at_10 value: 62.132 - type: recall_at_100 value: 88.55199999999999 - type: recall_at_1000 value: 97.707 - type: recall_at_3 value: 40.541 - type: recall_at_5 value: 49.739 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 95.68399452804377 - type: f1 value: 95.25490609832268 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 83.15321477428182 - type: f1 value: 60.35476439087966 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.92669804976462 - type: f1 value: 69.22815107207565 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.4855413584398 - type: f1 value: 72.92107516103387 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 32.412679360205544 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 28.09211869875204 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 30.540919056982545 - type: mrr value: 31.529904607063536 - task: type: Retrieval dataset: name: MTEB NFCorpus type: nfcorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.745 - type: map_at_10 value: 12.013 - type: map_at_100 value: 15.040000000000001 - type: map_at_1000 value: 16.427 - type: map_at_3 value: 8.841000000000001 - type: map_at_5 value: 10.289 - type: mrr_at_1 value: 45.201 - type: mrr_at_10 value: 53.483999999999995 - type: mrr_at_100 value: 54.20700000000001 - type: mrr_at_1000 value: 54.252 - type: mrr_at_3 value: 51.29 - type: mrr_at_5 value: 52.73 - type: ndcg_at_1 value: 43.808 - type: ndcg_at_10 value: 32.445 - type: ndcg_at_100 value: 30.031000000000002 - type: ndcg_at_1000 value: 39.007 - type: ndcg_at_3 value: 37.204 - type: ndcg_at_5 value: 35.07 - type: precision_at_1 value: 45.201 - type: precision_at_10 value: 23.684 - type: precision_at_100 value: 7.600999999999999 - type: precision_at_1000 value: 2.043 - type: precision_at_3 value: 33.953 - type: precision_at_5 value: 29.412 - type: recall_at_1 value: 5.745 - type: recall_at_10 value: 16.168 - type: recall_at_100 value: 30.875999999999998 - type: recall_at_1000 value: 62.686 - type: recall_at_3 value: 9.75 - type: recall_at_5 value: 12.413 - task: type: Retrieval dataset: name: MTEB NQ type: nq config: default split: test revision: None metrics: - type: map_at_1 value: 37.828 - type: map_at_10 value: 53.239000000000004 - type: map_at_100 value: 54.035999999999994 - type: map_at_1000 value: 54.067 - type: map_at_3 value: 49.289 - type: map_at_5 value: 51.784 - type: mrr_at_1 value: 42.497 - type: mrr_at_10 value: 55.916999999999994 - type: mrr_at_100 value: 56.495 - type: mrr_at_1000 value: 56.516999999999996 - type: mrr_at_3 value: 52.800000000000004 - type: mrr_at_5 value: 54.722 - type: ndcg_at_1 value: 42.468 - type: ndcg_at_10 value: 60.437 - type: ndcg_at_100 value: 63.731 - type: ndcg_at_1000 value: 64.41799999999999 - type: ndcg_at_3 value: 53.230999999999995 - type: ndcg_at_5 value: 57.26 - type: precision_at_1 value: 42.468 - type: precision_at_10 value: 9.47 - type: precision_at_100 value: 1.1360000000000001 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 23.724999999999998 - type: precision_at_5 value: 16.593 - type: recall_at_1 value: 37.828 - type: recall_at_10 value: 79.538 - type: recall_at_100 value: 93.646 - type: recall_at_1000 value: 98.72999999999999 - type: recall_at_3 value: 61.134 - type: recall_at_5 value: 70.377 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: quora config: default split: test revision: None metrics: - type: map_at_1 value: 70.548 - type: map_at_10 value: 84.466 - type: map_at_100 value: 85.10600000000001 - type: map_at_1000 value: 85.123 - type: map_at_3 value: 81.57600000000001 - type: map_at_5 value: 83.399 - type: mrr_at_1 value: 81.24 - type: mrr_at_10 value: 87.457 - type: mrr_at_100 value: 87.574 - type: mrr_at_1000 value: 87.575 - type: mrr_at_3 value: 86.507 - type: mrr_at_5 value: 87.205 - type: ndcg_at_1 value: 81.25 - type: ndcg_at_10 value: 88.203 - type: ndcg_at_100 value: 89.457 - type: ndcg_at_1000 value: 89.563 - type: ndcg_at_3 value: 85.465 - type: ndcg_at_5 value: 87.007 - type: precision_at_1 value: 81.25 - type: precision_at_10 value: 13.373 - type: precision_at_100 value: 1.5270000000000001 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.417 - type: precision_at_5 value: 24.556 - type: recall_at_1 value: 70.548 - type: recall_at_10 value: 95.208 - type: recall_at_100 value: 99.514 - type: recall_at_1000 value: 99.988 - type: recall_at_3 value: 87.214 - type: recall_at_5 value: 91.696 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 53.04822095496839 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 60.30778476474675 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: scidocs config: default split: test revision: None metrics: - type: map_at_1 value: 4.692 - type: map_at_10 value: 11.766 - type: map_at_100 value: 13.904 - type: map_at_1000 value: 14.216999999999999 - type: map_at_3 value: 8.245 - type: map_at_5 value: 9.92 - type: mrr_at_1 value: 23.0 - type: mrr_at_10 value: 33.78 - type: mrr_at_100 value: 34.922 - type: mrr_at_1000 value: 34.973 - type: mrr_at_3 value: 30.2 - type: mrr_at_5 value: 32.565 - type: ndcg_at_1 value: 23.0 - type: ndcg_at_10 value: 19.863 - type: ndcg_at_100 value: 28.141 - type: ndcg_at_1000 value: 33.549 - type: ndcg_at_3 value: 18.434 - type: ndcg_at_5 value: 16.384 - type: precision_at_1 value: 23.0 - type: precision_at_10 value: 10.39 - type: precision_at_100 value: 2.235 - type: precision_at_1000 value: 0.35300000000000004 - type: precision_at_3 value: 17.133000000000003 - type: precision_at_5 value: 14.44 - type: recall_at_1 value: 4.692 - type: recall_at_10 value: 21.025 - type: recall_at_100 value: 45.324999999999996 - type: recall_at_1000 value: 71.675 - type: recall_at_3 value: 10.440000000000001 - type: recall_at_5 value: 14.64 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 84.96178184892842 - type: cos_sim_spearman value: 79.6487740813199 - type: euclidean_pearson value: 82.06661161625023 - type: euclidean_spearman value: 79.64876769031183 - type: manhattan_pearson value: 82.07061164575131 - type: manhattan_spearman value: 79.65197039464537 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 84.15305604100027 - type: cos_sim_spearman value: 74.27447427941591 - type: euclidean_pearson value: 80.52737337565307 - type: euclidean_spearman value: 74.27416077132192 - type: manhattan_pearson value: 80.53728571140387 - type: manhattan_spearman value: 74.28853605753457 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 83.44386080639279 - type: cos_sim_spearman value: 84.17947648159536 - type: euclidean_pearson value: 83.34145388129387 - type: euclidean_spearman value: 84.17947648159536 - type: manhattan_pearson value: 83.30699061927966 - type: manhattan_spearman value: 84.18125737380451 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 81.57392220985612 - type: cos_sim_spearman value: 78.80745014464101 - type: euclidean_pearson value: 80.01660371487199 - type: euclidean_spearman value: 78.80741240102256 - type: manhattan_pearson value: 79.96810779507953 - type: manhattan_spearman value: 78.75600400119448 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 86.85421063026625 - type: cos_sim_spearman value: 87.55320285299192 - type: euclidean_pearson value: 86.69750143323517 - type: euclidean_spearman value: 87.55320284326378 - type: manhattan_pearson value: 86.63379169960379 - type: manhattan_spearman value: 87.4815029877984 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 84.31314130411842 - type: cos_sim_spearman value: 85.3489588181433 - type: euclidean_pearson value: 84.13240933463535 - type: euclidean_spearman value: 85.34902871403281 - type: manhattan_pearson value: 84.01183086503559 - type: manhattan_spearman value: 85.19316703166102 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 89.09979781689536 - type: cos_sim_spearman value: 88.87813323759015 - type: euclidean_pearson value: 88.65413031123792 - type: euclidean_spearman value: 88.87813323759015 - type: manhattan_pearson value: 88.61818758256024 - type: manhattan_spearman value: 88.81044100494604 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 62.30693258111531 - type: cos_sim_spearman value: 62.195516523251946 - type: euclidean_pearson value: 62.951283701049476 - type: euclidean_spearman value: 62.195516523251946 - type: manhattan_pearson value: 63.068322281439535 - type: manhattan_spearman value: 62.10621171028406 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 84.27092833763909 - type: cos_sim_spearman value: 84.84429717949759 - type: euclidean_pearson value: 84.8516966060792 - type: euclidean_spearman value: 84.84429717949759 - type: manhattan_pearson value: 84.82203139242881 - type: manhattan_spearman value: 84.8358503952945 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 83.10290863981409 - type: mrr value: 95.31168450286097 - task: type: Retrieval dataset: name: MTEB SciFact type: scifact config: default split: test revision: None metrics: - type: map_at_1 value: 52.161 - type: map_at_10 value: 62.138000000000005 - type: map_at_100 value: 62.769 - type: map_at_1000 value: 62.812 - type: map_at_3 value: 59.111000000000004 - type: map_at_5 value: 60.995999999999995 - type: mrr_at_1 value: 55.333 - type: mrr_at_10 value: 63.504000000000005 - type: mrr_at_100 value: 64.036 - type: mrr_at_1000 value: 64.08 - type: mrr_at_3 value: 61.278 - type: mrr_at_5 value: 62.778 - type: ndcg_at_1 value: 55.333 - type: ndcg_at_10 value: 66.678 - type: ndcg_at_100 value: 69.415 - type: ndcg_at_1000 value: 70.453 - type: ndcg_at_3 value: 61.755 - type: ndcg_at_5 value: 64.546 - type: precision_at_1 value: 55.333 - type: precision_at_10 value: 9.033 - type: precision_at_100 value: 1.043 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 24.221999999999998 - type: precision_at_5 value: 16.333000000000002 - type: recall_at_1 value: 52.161 - type: recall_at_10 value: 79.156 - type: recall_at_100 value: 91.333 - type: recall_at_1000 value: 99.333 - type: recall_at_3 value: 66.43299999999999 - type: recall_at_5 value: 73.272 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.81287128712871 - type: cos_sim_ap value: 95.30034785910676 - type: cos_sim_f1 value: 90.28629856850716 - type: cos_sim_precision value: 92.36401673640168 - type: cos_sim_recall value: 88.3 - type: dot_accuracy value: 99.81287128712871 - type: dot_ap value: 95.30034785910676 - type: dot_f1 value: 90.28629856850716 - type: dot_precision value: 92.36401673640168 - type: dot_recall value: 88.3 - type: euclidean_accuracy value: 99.81287128712871 - type: euclidean_ap value: 95.30034785910676 - type: euclidean_f1 value: 90.28629856850716 - type: euclidean_precision value: 92.36401673640168 - type: euclidean_recall value: 88.3 - type: manhattan_accuracy value: 99.80990099009901 - type: manhattan_ap value: 95.26880751950654 - type: manhattan_f1 value: 90.22177419354838 - type: manhattan_precision value: 90.95528455284553 - type: manhattan_recall value: 89.5 - type: max_accuracy value: 99.81287128712871 - type: max_ap value: 95.30034785910676 - type: max_f1 value: 90.28629856850716 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 58.518662504351184 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 34.96168178378587 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 52.04862593471896 - type: mrr value: 52.97238402936932 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.092545236479946 - type: cos_sim_spearman value: 31.599851000175498 - type: dot_pearson value: 30.092542723901676 - type: dot_spearman value: 31.599851000175498 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: trec-covid config: default split: test revision: None metrics: - type: map_at_1 value: 0.189 - type: map_at_10 value: 1.662 - type: map_at_100 value: 9.384 - type: map_at_1000 value: 22.669 - type: map_at_3 value: 0.5559999999999999 - type: map_at_5 value: 0.9039999999999999 - type: mrr_at_1 value: 68.0 - type: mrr_at_10 value: 81.01899999999999 - type: mrr_at_100 value: 81.01899999999999 - type: mrr_at_1000 value: 81.01899999999999 - type: mrr_at_3 value: 79.333 - type: mrr_at_5 value: 80.733 - type: ndcg_at_1 value: 63.0 - type: ndcg_at_10 value: 65.913 - type: ndcg_at_100 value: 51.895 - type: ndcg_at_1000 value: 46.967 - type: ndcg_at_3 value: 65.49199999999999 - type: ndcg_at_5 value: 66.69699999999999 - type: precision_at_1 value: 68.0 - type: precision_at_10 value: 71.6 - type: precision_at_100 value: 53.66 - type: precision_at_1000 value: 21.124000000000002 - type: precision_at_3 value: 72.667 - type: precision_at_5 value: 74.0 - type: recall_at_1 value: 0.189 - type: recall_at_10 value: 1.913 - type: recall_at_100 value: 12.601999999999999 - type: recall_at_1000 value: 44.296 - type: recall_at_3 value: 0.605 - type: recall_at_5 value: 1.018 - task: type: Retrieval dataset: name: MTEB Touche2020 type: webis-touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.701 - type: map_at_10 value: 10.445 - type: map_at_100 value: 17.324 - type: map_at_1000 value: 19.161 - type: map_at_3 value: 5.497 - type: map_at_5 value: 7.278 - type: mrr_at_1 value: 30.612000000000002 - type: mrr_at_10 value: 45.534 - type: mrr_at_100 value: 45.792 - type: mrr_at_1000 value: 45.806999999999995 - type: mrr_at_3 value: 37.755 - type: mrr_at_5 value: 43.469 - type: ndcg_at_1 value: 26.531 - type: ndcg_at_10 value: 26.235000000000003 - type: ndcg_at_100 value: 39.17 - type: ndcg_at_1000 value: 51.038 - type: ndcg_at_3 value: 23.625 - type: ndcg_at_5 value: 24.338 - type: precision_at_1 value: 30.612000000000002 - type: precision_at_10 value: 24.285999999999998 - type: precision_at_100 value: 8.224 - type: precision_at_1000 value: 1.6179999999999999 - type: precision_at_3 value: 24.490000000000002 - type: precision_at_5 value: 24.898 - type: recall_at_1 value: 2.701 - type: recall_at_10 value: 17.997 - type: recall_at_100 value: 51.766999999999996 - type: recall_at_1000 value: 87.863 - type: recall_at_3 value: 6.295000000000001 - type: recall_at_5 value: 9.993 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 73.3474 - type: ap value: 15.393431414459924 - type: f1 value: 56.466681887882416 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 62.062818336163 - type: f1 value: 62.11230840463252 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 42.464892820845115 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 86.15962329379508 - type: cos_sim_ap value: 74.73674057919256 - type: cos_sim_f1 value: 68.81245642574947 - type: cos_sim_precision value: 61.48255813953488 - type: cos_sim_recall value: 78.12664907651715 - type: dot_accuracy value: 86.15962329379508 - type: dot_ap value: 74.7367634988281 - type: dot_f1 value: 68.81245642574947 - type: dot_precision value: 61.48255813953488 - type: dot_recall value: 78.12664907651715 - type: euclidean_accuracy value: 86.15962329379508 - type: euclidean_ap value: 74.7367761466634 - type: euclidean_f1 value: 68.81245642574947 - type: euclidean_precision value: 61.48255813953488 - type: euclidean_recall value: 78.12664907651715 - type: manhattan_accuracy value: 86.21326816474935 - type: manhattan_ap value: 74.64416473733951 - type: manhattan_f1 value: 68.80924855491331 - type: manhattan_precision value: 61.23456790123457 - type: manhattan_recall value: 78.52242744063325 - type: max_accuracy value: 86.21326816474935 - type: max_ap value: 74.7367761466634 - type: max_f1 value: 68.81245642574947 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.97620988085536 - type: cos_sim_ap value: 86.08680845745758 - type: cos_sim_f1 value: 78.02793637114438 - type: cos_sim_precision value: 73.11082699683736 - type: cos_sim_recall value: 83.65414228518632 - type: dot_accuracy value: 88.97620988085536 - type: dot_ap value: 86.08681149437946 - type: dot_f1 value: 78.02793637114438 - type: dot_precision value: 73.11082699683736 - type: dot_recall value: 83.65414228518632 - type: euclidean_accuracy value: 88.97620988085536 - type: euclidean_ap value: 86.08681215460771 - type: euclidean_f1 value: 78.02793637114438 - type: euclidean_precision value: 73.11082699683736 - type: euclidean_recall value: 83.65414228518632 - type: manhattan_accuracy value: 88.88888888888889 - type: manhattan_ap value: 86.02916327562438 - type: manhattan_f1 value: 78.02063045516843 - type: manhattan_precision value: 73.38851947346994 - type: manhattan_recall value: 83.2768709578072 - type: max_accuracy value: 88.97620988085536 - type: max_ap value: 86.08681215460771 - type: max_f1 value: 78.02793637114438 --- # djuna/jina-embeddings-v2-base-en-Q5_K_M-GGUF This model was converted to GGUF format from [`jinaai/jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo djuna/jina-embeddings-v2-base-en-Q5_K_M-GGUF --hf-file jina-embeddings-v2-base-en-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo djuna/jina-embeddings-v2-base-en-Q5_K_M-GGUF --hf-file jina-embeddings-v2-base-en-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo djuna/jina-embeddings-v2-base-en-Q5_K_M-GGUF --hf-file jina-embeddings-v2-base-en-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo djuna/jina-embeddings-v2-base-en-Q5_K_M-GGUF --hf-file jina-embeddings-v2-base-en-q5_k_m.gguf -c 2048 ```