dk-crazydiv commited on
Commit
561c2b4
1 Parent(s): 499d7e7

longtraining1

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 282.02 +/- 22.46
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 296.60 +/- 16.78
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fce41ef1b00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fce41ef1b90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fce41ef1c20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fce41ef1cb0>", "_build": "<function ActorCriticPolicy._build at 0x7fce41ef1d40>", "forward": "<function ActorCriticPolicy.forward at 0x7fce41ef1dd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fce41ef1e60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fce41ef1ef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fce41ef1f80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fce41ef7050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fce41ef70e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fce41f463f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 65536, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651750166.1774747, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACbLSr6MS00/ShTdPAIGGL9YVYS+ohe1PQAAAAAAAAAAmuVivZxAAbzjvS08gfqQPA3qTL1IonI9AACAPwAAgD9NSIQ9we1TP5zSqLyS1Q6/Y08sPkjj3LwAAAAAAAAAADPy1Ly4WIe75k94PPIbAT3IdEe8zcHftAAAgD8AAIA/5tudvXCavT93DK++wicNvmTV/bw98mW9AAAAAAAAAACmdq29JA+8PWgljD6ppKS+p9ShPXxvEj4AAAAAAAAAAADoc7wc6Qi8bUCivDlhxzxupUU91RXuuwAAgD8AAIA/zZkYPqVulT/PzsA+AW4Ov8vbpz5qiX4+AAAAAAAAAACNDVI+f7iWP8IDzT7G5gO/yCTVPg0eMT4AAAAAAAAAAJqpQbwbZZK8GVofve9Skrt1M549YjO6vQAAgD8AAIA/ZnWOvBSHkD3MFQu93nTgvhx6CL6iSJ67AAAAAAAAAACAlC09O6+IvCggJL65Mkg9YacvPcpDp7sAAIA/AACAPzOj5j3zdnk/5S4XPTrwD79cTYE+DZN2vQAAAAAAAAAAgNgPvSiR4z0TK1I+FPPQvkNL9zwVpdM9AAAAAAAAAAAzDIQ8lDCiPzvY0j0jbBW/BSk/PZsNuz0AAAAAAAAAADNLyju79JY/6nGYPO29L7/2pSQ9ZJqYPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/I123DDfc0CUhpRSlIwBbJRL04wBdJRHQGMWsmOU+s51fZQoaAZoCWgPQwjuIeF7/7FwQJSGlFKUaBVLxmgWR0BjG3/DLr5ZdX2UKGgGaAloD0MImkNSC6X5ckCUhpRSlGgVS8ZoFkdAYyHM/yGzr3V9lChoBmgJaA9DCNlAuth0HXRAlIaUUpRoFUvcaBZHQGMnI0hvBJt1fZQoaAZoCWgPQwh48umx7bVxQJSGlFKUaBVL4GgWR0BjKSF9KEnLdX2UKGgGaAloD0MIMLsnD8v1ckCUhpRSlGgVS9BoFkdAYynxLCemN3V9lChoBmgJaA9DCPrxlxY1qnNAlIaUUpRoFUvnaBZHQGMqZUT+NtJ1fZQoaAZoCWgPQwjt1jIZzgZyQJSGlFKUaBVL3WgWR0BjLN1wHZ9NdX2UKGgGaAloD0MIXW+bqRC9cUCUhpRSlGgVS8xoFkdAYy5h4t6HCXV9lChoBmgJaA9DCKBuoMC7Y3NAlIaUUpRoFUu/aBZHQGMupSBK+SN1fZQoaAZoCWgPQwilLa7xWZtzQJSGlFKUaBVLwWgWR0BjM2P91loUdX2UKGgGaAloD0MI0XR2MrjlcECUhpRSlGgVS8BoFkdAYzefs/pt8HV9lChoBmgJaA9DCAAAAADAtXFAlIaUUpRoFUvCaBZHQGM3zC1qnFZ1fZQoaAZoCWgPQwjZ7h6ge+ZyQJSGlFKUaBVLuWgWR0BjN7lcQiA2dX2UKGgGaAloD0MIXYjVH2HfcECUhpRSlGgVS9NoFkdAYzoIUJv5xnV9lChoBmgJaA9DCL7Z5sa05XFAlIaUUpRoFUvUaBZHQGM7a1kUbkx1fZQoaAZoCWgPQwiuZMdGoG1xQJSGlFKUaBVLwWgWR0BjRWkk8ifQdX2UKGgGaAloD0MI2xZlNsi6cUCUhpRSlGgVS9ZoFkdAY0VScbzbvnV9lChoBmgJaA9DCAvRIXBkS3JAlIaUUpRoFUvKaBZHQGRX2sA/9pB1fZQoaAZoCWgPQwgujspNFJRxQJSGlFKUaBVLsWgWR0BkWP8O09hadX2UKGgGaAloD0MINNWT+YebcUCUhpRSlGgVS85oFkdAZGBr7fpD/nV9lChoBmgJaA9DCHNJ1XYT125AlIaUUpRoFUvDaBZHQGRg29cry2B1fZQoaAZoCWgPQwjdJXFWxNJvQJSGlFKUaBVLvWgWR0BkYY0hvBJqdX2UKGgGaAloD0MIlj50QX1kcECUhpRSlGgVS8loFkdAZGQsRQJokHV9lChoBmgJaA9DCAGG5c83ZXFAlIaUUpRoFUvraBZHQGRkp9ZzPrx1fZQoaAZoCWgPQwiJC0CjNONzQJSGlFKUaBVL3WgWR0BkZINVinYQdX2UKGgGaAloD0MI9HAC02nRc0CUhpRSlGgVS8toFkdAZG5lHSWqtHV9lChoBmgJaA9DCJZBtcEJiXFAlIaUUpRoFUvdaBZHQGRyuIhyKel1fZQoaAZoCWgPQwhoB1xXDD9zQJSGlFKUaBVL4WgWR0Bkc8X3xnWbdX2UKGgGaAloD0MI93ZLcsDQcUCUhpRSlGgVS9RoFkdAZHOf0VafSXV9lChoBmgJaA9DCH9Ma9OYH3NAlIaUUpRoFUv4aBZHQGR0F8PWhAZ1fZQoaAZoCWgPQwjE6LmFrjRzQJSGlFKUaBVL0GgWR0BkdFZNfw7UdX2UKGgGaAloD0MID9Qpjy7DcUCUhpRSlGgVS71oFkdAZHlBFd9lVnV9lChoBmgJaA9DCKhxb37D8m9AlIaUUpRoFUvOaBZHQGR83cHnln11fZQoaAZoCWgPQwi/KaxUEGpzQJSGlFKUaBVLvWgWR0Bkga925hBrdX2UKGgGaAloD0MIeLeyRCcYcUCUhpRSlGgVS8poFkdAZIM56t1ZDHV9lChoBmgJaA9DCFZl3xXB9XFAlIaUUpRoFUuqaBZHQGSE974SHuZ1fZQoaAZoCWgPQwj6QzNPLjBxQJSGlFKUaBVLsmgWR0Bkhiohpxm1dX2UKGgGaAloD0MIsW8nESHtckCUhpRSlGgVS8poFkdAZIvpN9H+ZXV9lChoBmgJaA9DCDPFHARdj3NAlIaUUpRoFUvDaBZHQGSNHoouwot1fZQoaAZoCWgPQwj0bFZ9rk9uQJSGlFKUaBVLxmgWR0BkjVBa9sabdX2UKGgGaAloD0MITYHMzqKLUECUhpRSlGgVS35oFkdAZI2u14Pf9HV9lChoBmgJaA9DCByastMPBm9AlIaUUpRoFUvNaBZHQGSPEQwsXi11fZQoaAZoCWgPQwjG/NzQFJ9xQJSGlFKUaBVL0WgWR0BkmVdmg8KYdX2UKGgGaAloD0MI4gD6fX/xcECUhpRSlGgVS79oFkdAZJpqC6H0snV9lChoBmgJaA9DCNDtJY0RDHBAlIaUUpRoFUu+aBZHQGSaiqp97Wx1fZQoaAZoCWgPQwg8SiU8IVJwQJSGlFKUaBVL2mgWR0BknxnezlcRdX2UKGgGaAloD0MI5IV0eMjYcECUhpRSlGgVS79oFkdAZKB6Q/5cknV9lChoBmgJaA9DCHKo34Vts3BAlIaUUpRoFUveaBZHQGSgt5le4Td1fZQoaAZoCWgPQwi5NlSMM0txQJSGlFKUaBVL1GgWR0BkqIG6f8MvdX2UKGgGaAloD0MIHogs0sRHSUCUhpRSlGgVS4VoFkdAZKp7sOXmeXV9lChoBmgJaA9DCGhAvRm1fXFAlIaUUpRoFUvWaBZHQGStxTjvNNd1fZQoaAZoCWgPQwiUS+MXHhJyQJSGlFKUaBVL0mgWR0BkroK6WgOCdX2UKGgGaAloD0MIcHztmaU1ckCUhpRSlGgVS8toFkdAZK6TIvJzUHV9lChoBmgJaA9DCPUUOUQcT3FAlIaUUpRoFUu2aBZHQGSykU9IPLB1fZQoaAZoCWgPQwgWbY5zW9hxQJSGlFKUaBVL3mgWR0Bks6jJuEVWdX2UKGgGaAloD0MIZFjFGxl7ckCUhpRSlGgVS8xoFkdAZLXhrFfiP3V9lChoBmgJaA9DCJNUppiDsG5AlIaUUpRoFUvJaBZHQGS281n/T9d1fZQoaAZoCWgPQwjHgOz1rmxxQJSGlFKUaBVL0WgWR0BkuDxEv0yydX2UKGgGaAloD0MIj4r/O2IWcUCUhpRSlGgVS61oFkdAZMKWmgrYoXV9lChoBmgJaA9DCMJQhxVurXBAlIaUUpRoFUvFaBZHQGTDCbDuSfV1fZQoaAZoCWgPQwhK7UW03SRzQJSGlFKUaBVL1WgWR0BkxUP8Q7LddX2UKGgGaAloD0MImpguxOr0cUCUhpRSlGgVS+FoFkdAZMkf29L6DXV9lChoBmgJaA9DCHEfuTUpJHFAlIaUUpRoFUveaBZHQGTO4Glhw2l1fZQoaAZoCWgPQwiTpkHRfKBxQJSGlFKUaBVLvmgWR0Bk0BbGFSKndX2UKGgGaAloD0MIchQgCuYcc0CUhpRSlGgVS+VoFkdAZNA1sLv1DnV9lChoBmgJaA9DCMAjKlR3zHJAlIaUUpRoFUu8aBZHQGTV+2/i5ut1fZQoaAZoCWgPQwhdFajFoKRxQJSGlFKUaBVL0mgWR0Bk1nP7el9CdX2UKGgGaAloD0MIC9P3GkI0cECUhpRSlGgVS8xoFkdAZNh3TNMXanV9lChoBmgJaA9DCHbicrwC53NAlIaUUpRoFUvNaBZHQGTZaE8JUo91fZQoaAZoCWgPQwiCixU1mO5wQJSGlFKUaBVL0mgWR0Bk3pK15Sm7dX2UKGgGaAloD0MICRUcXlDWckCUhpRSlGgVS7xoFkdAZN+8+RoysXV9lChoBmgJaA9DCNP1RNfFF3FAlIaUUpRoFUvJaBZHQGThF23azu51fZQoaAZoCWgPQwhJ2SJpN29xQJSGlFKUaBVL2WgWR0Bk4RwEQoTgdX2UKGgGaAloD0MIHLeYn9v1cUCUhpRSlGgVS95oFkdAZOQ5o4+8oXV9lChoBmgJaA9DCM5Q3PEmXU1AlIaUUpRoFUujaBZHQGTk5n13+uN1fZQoaAZoCWgPQwgSL0/nysJwQJSGlFKUaBVLxmgWR0Bk7rfWMCLddX2UKGgGaAloD0MIjWDj+ndHckCUhpRSlGgVS9RoFkdAZO9xRVIZqHV9lChoBmgJaA9DCD6w478AEXNAlIaUUpRoFUvNaBZHQGTz8BMi8nN1fZQoaAZoCWgPQwiES8ecJyJxQJSGlFKUaBVLxGgWR0Bk+SlxffGddX2UKGgGaAloD0MIflLt03EnckCUhpRSlGgVS8loFkdAZPkgSOBDonV9lChoBmgJaA9DCDsBTYRN/3BAlIaUUpRoFUvKaBZHQGT6kv9LpRp1fZQoaAZoCWgPQwgfEr73t1lxQJSGlFKUaBVLuGgWR0Bk/OgxrSE2dX2UKGgGaAloD0MIgIEgQIZAckCUhpRSlGgVS8JoFkdAZP5xwQ176nV9lChoBmgJaA9DCOj0vBtLWHFAlIaUUpRoFUu+aBZHQGUBDASFoL51fZQoaAZoCWgPQwgtW+uLROpwQJSGlFKUaBVLumgWR0BlBYnH/95ydX2UKGgGaAloD0MIrd9MTFcfc0CUhpRSlGgVS9poFkdAZQYB3A2ycHV9lChoBmgJaA9DCKuVCb/UHXNAlIaUUpRoFUvAaBZHQGUJmmk30f51fZQoaAZoCWgPQwiHNCpwcvJyQJSGlFKUaBVL3WgWR0BlDlQj2SMcdX2UKGgGaAloD0MIkXu6uiMccUCUhpRSlGgVS9hoFkdAZQ61YyO7x3V9lChoBmgJaA9DCIguqG/ZV3JAlIaUUpRoFUvTaBZHQGURpyhi9Zl1fZQoaAZoCWgPQwh5AmGnGKdzQJSGlFKUaBVL2mgWR0BlEm4Cp3otdX2UKGgGaAloD0MI/0C5bV/3ckCUhpRSlGgVS8hoFkdAZRlFRYRuj3V9lChoBmgJaA9DCJ6ayw2GCHNAlIaUUpRoFUvgaBZHQGUfF8G9pRJ1fZQoaAZoCWgPQwjBjv8CwWpxQJSGlFKUaBVLzmgWR0BlH6gh8pkPdX2UKGgGaAloD0MIVK2FWSjDckCUhpRSlGgVS7loFkdAZSHVp9JBgXV9lChoBmgJaA9DCLU1IhgH0XJAlIaUUpRoFUvHaBZHQGUjWbobGWF1fZQoaAZoCWgPQwhi2jf3V5B0QJSGlFKUaBVLz2gWR0BlJcX7+DODdX2UKGgGaAloD0MII4eIm9P6ckCUhpRSlGgVS7hoFkdAZSZcVQAMlXV9lChoBmgJaA9DCPorZK7MhXFAlIaUUpRoFUvGaBZHQGUn4tHxz7x1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1300, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.999, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": false, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fce41ef1b00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fce41ef1b90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fce41ef1c20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fce41ef1cb0>", "_build": "<function ActorCriticPolicy._build at 0x7fce41ef1d40>", "forward": "<function ActorCriticPolicy.forward at 0x7fce41ef1dd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fce41ef1e60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fce41ef1ef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fce41ef1f80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fce41ef7050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fce41ef70e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fce41f463f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651750341.7298923, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAECTHD6MSyw//mi0vUVNIb9jPDo+5q7DvQAAAAAAAAAAZquCvLHYqj/Froq9pjfevqVQAjylTFy8AAAAAAAAAABAcuK9wCCoPvgoVj7WI9O+F+SjvZ016T0AAAAAAAAAAE1IMj3bnX8/8woGPgY/Jb+wQwM+dQjlPQAAAAAAAAAAM1CWPTjLx7tuUVS7IDeWPEP4Ez3qfX29AACAPwAAAABQVG+++h91PxHctr7PICy/PBrevnSXur0AAAAAAAAAAACb/7yIxom8FHaJPSWyJL1WDuo9C6+TPgAAgD8AAIA/Zr7ouxRMqbp6UoS1L/jgr5JfgzoKw7Y0AACAPwAAgD/qjIy+cypJP/CerT0lYxy/88O6vkrHNT4AAAAAAAAAAKCNLr4sN34+JWn3Pt1Tsr4Xmao942KWPgAAAAAAAAAAmmEVPR+StDz6u8S+LmzWvtEweb6/7Ei+AACAPwAAAACaMTu7ctNVP+5kiDzfbxe/2RuxPIYFAj0AAAAAAAAAAECCPD5rCHM/oxuRPsxBE7+VtMs+yj+kPQAAAAAAAAAAeoycPlHmNz9LE3i9dUIqv+KbDD9pAi6+AAAAAAAAAABm0Qm9/6iyP9p+FL6p6p6+S83wPFA0L7wAAAAAAAAAADNFzT0chhs+7iSavk1M3L5FOma+3JbGvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxausbQr+c0CUhpRSlIwBbJRL4IwBdJRHQJKgtAZ88cN1fZQoaAZoCWgPQwiVRszs8ydxQJSGlFKUaBVLt2gWR0CSoSJJ5E+gdX2UKGgGaAloD0MIWrvtQvNmcUCUhpRSlGgVS8doFkdAkqGIuPFNtnV9lChoBmgJaA9DCBMM5xqmdHFAlIaUUpRoFUvSaBZHQJKhovf0mMR1fZQoaAZoCWgPQwgmipC6XUxxQJSGlFKUaBVLuWgWR0CSodvKU3XJdX2UKGgGaAloD0MIc/T4vU0rcUCUhpRSlGgVS8RoFkdAkqIFkUbkwXV9lChoBmgJaA9DCIF8CRXclHBAlIaUUpRoFUu9aBZHQJKjBfw7T2F1fZQoaAZoCWgPQwjlKavpukZxQJSGlFKUaBVL2GgWR0CSo1XRw6yTdX2UKGgGaAloD0MIZHlXPWDcc0CUhpRSlGgVS9toFkdAkqRPqHGjsXV9lChoBmgJaA9DCOdvQiGCmnJAlIaUUpRoFUvYaBZHQJKkXvuw5eZ1fZQoaAZoCWgPQwh6q65D9W1xQJSGlFKUaBVLu2gWR0CSpPNG3F1kdX2UKGgGaAloD0MI0GBT55FIcUCUhpRSlGgVS7JoFkdAkqUVCXyAhHV9lChoBmgJaA9DCO/+eK8aR3BAlIaUUpRoFUu8aBZHQJKlInc+JP91fZQoaAZoCWgPQwhZv5mYbjZyQJSGlFKUaBVLtmgWR0CSpVe3QUpNdX2UKGgGaAloD0MIzJvDtVoHc0CUhpRSlGgVS+hoFkdAkqWKiO/+KnV9lChoBmgJaA9DCPdynxzF5HNAlIaUUpRoFUvLaBZHQJLEuTX8O091fZQoaAZoCWgPQwiL4eoAiNtzQJSGlFKUaBVLv2gWR0CSxSd2gWaddX2UKGgGaAloD0MI7GtdaoRgc0CUhpRSlGgVS7VoFkdAksVOpbUwz3V9lChoBmgJaA9DCKYLsfrjGnNAlIaUUpRoFUu3aBZHQJLFeNjslcB1fZQoaAZoCWgPQwg2P/7SInNyQJSGlFKUaBVL8GgWR0CSxfJv5xiodX2UKGgGaAloD0MIW311VSAhb0CUhpRSlGgVS8loFkdAksZCamXPaHV9lChoBmgJaA9DCLk2VIyz7HBAlIaUUpRoFUvdaBZHQJLGnj6vaDh1fZQoaAZoCWgPQwhlFwyu+ctxQJSGlFKUaBVLwGgWR0CSxw73PAwgdX2UKGgGaAloD0MIsTIa+TyAckCUhpRSlGgVS9JoFkdAksfUoKD02HV9lChoBmgJaA9DCFG8ytqmbXBAlIaUUpRoFUu/aBZHQJLISH58BuJ1fZQoaAZoCWgPQwg1fuGVpFFxQJSGlFKUaBVLu2gWR0CSyO9MK1G9dX2UKGgGaAloD0MIo5BkVm8jckCUhpRSlGgVS91oFkdAkskq86FM7HV9lChoBmgJaA9DCAzqW+Y0snFAlIaUUpRoFUvGaBZHQJLJIZdfLLZ1fZQoaAZoCWgPQwiw/s9hvhdzQJSGlFKUaBVLwmgWR0CSyTKkl/pddX2UKGgGaAloD0MI6+Oh7y7PckCUhpRSlGgVS7BoFkdAkskpfMOf/XV9lChoBmgJaA9DCEJbzqX4BXNAlIaUUpRoFUuxaBZHQJLJU9+w1SB1fZQoaAZoCWgPQwg3N6YnLElyQJSGlFKUaBVL12gWR0CSyeU+s5n2dX2UKGgGaAloD0MIZM4z9qVtdECUhpRSlGgVS7xoFkdAksn9waR6nnV9lChoBmgJaA9DCFyq0haXknJAlIaUUpRoFUu4aBZHQJLKC8SPEKp1fZQoaAZoCWgPQwhI3jmUIZNxQJSGlFKUaBVLzmgWR0CSyrrc0tROdX2UKGgGaAloD0MIu9Vz0jtcckCUhpRSlGgVS81oFkdAkssyteUpu3V9lChoBmgJaA9DCBZQqKfPEnJAlIaUUpRoFUvAaBZHQJLLMqWkadd1fZQoaAZoCWgPQwjGi4UhMtNxQJSGlFKUaBVLzWgWR0CSy9iLl3hXdX2UKGgGaAloD0MIwLFnz2V/cECUhpRSlGgVS9BoFkdAksxp2U0N0HV9lChoBmgJaA9DCHmUSnjCf3BAlIaUUpRoFUu+aBZHQJLMswUQCjl1fZQoaAZoCWgPQwi2aWyvRWxyQJSGlFKUaBVLt2gWR0CSzPplSS/1dX2UKGgGaAloD0MIby2T4Xj6ckCUhpRSlGgVS6ZoFkdAks1bLhaTwHV9lChoBmgJaA9DCBZNZyfDRXJAlIaUUpRoFUvIaBZHQJLOMjv/io91fZQoaAZoCWgPQwhn170VCXtyQJSGlFKUaBVLy2gWR0CSzldxAB1cdX2UKGgGaAloD0MIOiNKe8NwckCUhpRSlGgVS7NoFkdAks56A8Swn3V9lChoBmgJaA9DCIpVgzC3KXJAlIaUUpRoFUvgaBZHQJLOpbkfcN91fZQoaAZoCWgPQwjd66S+bGVyQJSGlFKUaBVLwWgWR0CSzvlb/wRXdX2UKGgGaAloD0MIKQezCTChckCUhpRSlGgVS+VoFkdAks8vzSThYXV9lChoBmgJaA9DCDaVRWEXB3NAlIaUUpRoFUvLaBZHQJLPS9kBjnV1fZQoaAZoCWgPQwi78IPzKXtwQJSGlFKUaBVLumgWR0CSz5PTG5tndX2UKGgGaAloD0MIbvse9dfcckCUhpRSlGgVTQUBaBZHQJLP3a8Hv+h1fZQoaAZoCWgPQwii8UQQJyFyQJSGlFKUaBVLuWgWR0CS0ALgXMyKdX2UKGgGaAloD0MIXeDyWHOecECUhpRSlGgVS8ZoFkdAktBS7Ciyp3V9lChoBmgJaA9DCEaU9gZfCXFAlIaUUpRoFUu3aBZHQJLQm+/QBxR1fZQoaAZoCWgPQwgixQCJZuxxQJSGlFKUaBVLumgWR0CS0Ybg0j1PdX2UKGgGaAloD0MIrcJmgAsec0CUhpRSlGgVS7xoFkdAktHdOh0yQHV9lChoBmgJaA9DCF9/Ep/7fnFAlIaUUpRoFUvWaBZHQJLR+NNrTH91fZQoaAZoCWgPQwivBb03hkp0QJSGlFKUaBVL1GgWR0CS0umzSkTIdX2UKGgGaAloD0MIPV+zXHYbckCUhpRSlGgVS7poFkdAktMj1TR6W3V9lChoBmgJaA9DCCieswUEWHFAlIaUUpRoFUu4aBZHQJLTW8jAzpJ1fZQoaAZoCWgPQwiJesGnuWNyQJSGlFKUaBVLvWgWR0CS01siSq2jdX2UKGgGaAloD0MIlWOyuH+Uc0CUhpRSlGgVS8BoFkdAktO+e8PFvXV9lChoBmgJaA9DCKPLm8P123JAlIaUUpRoFUuzaBZHQJLT5QemvW91fZQoaAZoCWgPQwjIt3cNOtNyQJSGlFKUaBVLxGgWR0CS1GkD6nBMdX2UKGgGaAloD0MIyF2EKcrYcUCUhpRSlGgVS89oFkdAktRiyY5T63V9lChoBmgJaA9DCFH1K50PwHBAlIaUUpRoFUu7aBZHQJLUu2JBPbh1fZQoaAZoCWgPQwj/d0SFajdwQJSGlFKUaBVLxWgWR0CS1LW/JvHcdX2UKGgGaAloD0MIih2NQz3Uc0CUhpRSlGgVS8BoFkdAktVKoQ4CIXV9lChoBmgJaA9DCBzRPetaTHJAlIaUUpRoFUvUaBZHQJLVdaLXL/11fZQoaAZoCWgPQwind/F+XHRxQJSGlFKUaBVLrGgWR0CS1fTBZZB+dX2UKGgGaAloD0MIw35PrFNocUCUhpRSlGgVS9doFkdAktYrNB4UvnV9lChoBmgJaA9DCBAEyNBxHnFAlIaUUpRoFUvCaBZHQJLW9J4B3id1fZQoaAZoCWgPQwgkQ46tp4NwQJSGlFKUaBVL0WgWR0CS10umaYu1dX2UKGgGaAloD0MINbOWAhJ+cUCUhpRSlGgVS7ZoFkdAktfFo11nunV9lChoBmgJaA9DCDxLkBGQC3JAlIaUUpRoFUumaBZHQJLX+Hj6vaF1fZQoaAZoCWgPQwgzVMVU+pZyQJSGlFKUaBVLuGgWR0CS2A4GD+R6dX2UKGgGaAloD0MIufyH9NtLckCUhpRSlGgVS8hoFkdAkth4nndO7HV9lChoBmgJaA9DCKrTgayndHBAlIaUUpRoFUuzaBZHQJLYe5Gz8gp1fZQoaAZoCWgPQwgiizTxzqJxQJSGlFKUaBVL3mgWR0CS2KcBEKE4dX2UKGgGaAloD0MIzsKednj+cUCUhpRSlGgVS6xoFkdAktjRLXcxkHV9lChoBmgJaA9DCBrBxvVvQHFAlIaUUpRoFUu0aBZHQJLZCOJcgQp1fZQoaAZoCWgPQwjcEU4LXo9wQJSGlFKUaBVLwWgWR0CS2bC4BmwrdX2UKGgGaAloD0MI7zhFRzLyckCUhpRSlGgVS8NoFkdAktm5gb6xgXV9lChoBmgJaA9DCJaxoZt9hXFAlIaUUpRoFUutaBZHQJLZyur6tT11fZQoaAZoCWgPQwjDnKBNTrpyQJSGlFKUaBVLr2gWR0CS2gDdxhlUdX2UKGgGaAloD0MIaeVeYNa3cUCUhpRSlGgVS7JoFkdAktqKvA44qHV9lChoBmgJaA9DCGoTJ/c7BHJAlIaUUpRoFUu8aBZHQJLb6OYIBzV1fZQoaAZoCWgPQwhZTGw+7kNzQJSGlFKUaBVL3mgWR0CS3AJr+HafdX2UKGgGaAloD0MIsBu2LQoVc0CUhpRSlGgVS71oFkdAktw/En9ehXV9lChoBmgJaA9DCNKm6h4ZQ3JAlIaUUpRoFUuvaBZHQJLcXiQ1aW51fZQoaAZoCWgPQwjnqQ65WThyQJSGlFKUaBVLsGgWR0CS3RcjJMg2dX2UKGgGaAloD0MIE5oklhSXcUCUhpRSlGgVS8RoFkdAkt02C2+fy3V9lChoBmgJaA9DCFN5O8Kpk3NAlIaUUpRoFUvGaBZHQJLdL0/W1+l1fZQoaAZoCWgPQwgpXI/CtQNyQJSGlFKUaBVLsmgWR0CS3VKg7HQydX2UKGgGaAloD0MIwha7fRYLckCUhpRSlGgVS75oFkdAkt12ZVn27HV9lChoBmgJaA9DCAx3Loy0nXJAlIaUUpRoFUu/aBZHQJLeC7nPmgd1fZQoaAZoCWgPQwjQRUPG44FyQJSGlFKUaBVLzmgWR0CS3jBDXvphdX2UKGgGaAloD0MIA+55/vSxcUCUhpRSlGgVS7RoFkdAkt6AcDKYA3V9lChoBmgJaA9DCB4X1SIiOnBAlIaUUpRoFUu9aBZHQJLeolQdjoZ1fZQoaAZoCWgPQwj2B8ptO0ZxQJSGlFKUaBVLumgWR0CS3pZ75VOsdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1548, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.999, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": false, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1fab80b2ce79dbf9e10329dec20baaae8c26cd93585e51bb6e3cf662907769f2
3
- size 143979
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:243fdd2e3ee3385d322de94cc13cc42cea3cba4484ccdc348b89ccf43fd31337
3
+ size 143985
ppo-LunarLander-v2/data CHANGED
@@ -42,12 +42,12 @@
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
- "num_timesteps": 65536,
46
- "_total_timesteps": 50000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1651750166.1774747,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,7 +56,7 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACbLSr6MS00/ShTdPAIGGL9YVYS+ohe1PQAAAAAAAAAAmuVivZxAAbzjvS08gfqQPA3qTL1IonI9AACAPwAAgD9NSIQ9we1TP5zSqLyS1Q6/Y08sPkjj3LwAAAAAAAAAADPy1Ly4WIe75k94PPIbAT3IdEe8zcHftAAAgD8AAIA/5tudvXCavT93DK++wicNvmTV/bw98mW9AAAAAAAAAACmdq29JA+8PWgljD6ppKS+p9ShPXxvEj4AAAAAAAAAAADoc7wc6Qi8bUCivDlhxzxupUU91RXuuwAAgD8AAIA/zZkYPqVulT/PzsA+AW4Ov8vbpz5qiX4+AAAAAAAAAACNDVI+f7iWP8IDzT7G5gO/yCTVPg0eMT4AAAAAAAAAAJqpQbwbZZK8GVofve9Skrt1M549YjO6vQAAgD8AAIA/ZnWOvBSHkD3MFQu93nTgvhx6CL6iSJ67AAAAAAAAAACAlC09O6+IvCggJL65Mkg9YacvPcpDp7sAAIA/AACAPzOj5j3zdnk/5S4XPTrwD79cTYE+DZN2vQAAAAAAAAAAgNgPvSiR4z0TK1I+FPPQvkNL9zwVpdM9AAAAAAAAAAAzDIQ8lDCiPzvY0j0jbBW/BSk/PZsNuz0AAAAAAAAAADNLyju79JY/6nGYPO29L7/2pSQ9ZJqYPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,16 +66,16 @@
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.3107200000000001,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/I123DDfc0CUhpRSlIwBbJRL04wBdJRHQGMWsmOU+s51fZQoaAZoCWgPQwjuIeF7/7FwQJSGlFKUaBVLxmgWR0BjG3/DLr5ZdX2UKGgGaAloD0MImkNSC6X5ckCUhpRSlGgVS8ZoFkdAYyHM/yGzr3V9lChoBmgJaA9DCNlAuth0HXRAlIaUUpRoFUvcaBZHQGMnI0hvBJt1fZQoaAZoCWgPQwh48umx7bVxQJSGlFKUaBVL4GgWR0BjKSF9KEnLdX2UKGgGaAloD0MIMLsnD8v1ckCUhpRSlGgVS9BoFkdAYynxLCemN3V9lChoBmgJaA9DCPrxlxY1qnNAlIaUUpRoFUvnaBZHQGMqZUT+NtJ1fZQoaAZoCWgPQwjt1jIZzgZyQJSGlFKUaBVL3WgWR0BjLN1wHZ9NdX2UKGgGaAloD0MIXW+bqRC9cUCUhpRSlGgVS8xoFkdAYy5h4t6HCXV9lChoBmgJaA9DCKBuoMC7Y3NAlIaUUpRoFUu/aBZHQGMupSBK+SN1fZQoaAZoCWgPQwilLa7xWZtzQJSGlFKUaBVLwWgWR0BjM2P91loUdX2UKGgGaAloD0MI0XR2MrjlcECUhpRSlGgVS8BoFkdAYzefs/pt8HV9lChoBmgJaA9DCAAAAADAtXFAlIaUUpRoFUvCaBZHQGM3zC1qnFZ1fZQoaAZoCWgPQwjZ7h6ge+ZyQJSGlFKUaBVLuWgWR0BjN7lcQiA2dX2UKGgGaAloD0MIXYjVH2HfcECUhpRSlGgVS9NoFkdAYzoIUJv5xnV9lChoBmgJaA9DCL7Z5sa05XFAlIaUUpRoFUvUaBZHQGM7a1kUbkx1fZQoaAZoCWgPQwiuZMdGoG1xQJSGlFKUaBVLwWgWR0BjRWkk8ifQdX2UKGgGaAloD0MI2xZlNsi6cUCUhpRSlGgVS9ZoFkdAY0VScbzbvnV9lChoBmgJaA9DCAvRIXBkS3JAlIaUUpRoFUvKaBZHQGRX2sA/9pB1fZQoaAZoCWgPQwgujspNFJRxQJSGlFKUaBVLsWgWR0BkWP8O09hadX2UKGgGaAloD0MINNWT+YebcUCUhpRSlGgVS85oFkdAZGBr7fpD/nV9lChoBmgJaA9DCHNJ1XYT125AlIaUUpRoFUvDaBZHQGRg29cry2B1fZQoaAZoCWgPQwjdJXFWxNJvQJSGlFKUaBVLvWgWR0BkYY0hvBJqdX2UKGgGaAloD0MIlj50QX1kcECUhpRSlGgVS8loFkdAZGQsRQJokHV9lChoBmgJaA9DCAGG5c83ZXFAlIaUUpRoFUvraBZHQGRkp9ZzPrx1fZQoaAZoCWgPQwiJC0CjNONzQJSGlFKUaBVL3WgWR0BkZINVinYQdX2UKGgGaAloD0MI9HAC02nRc0CUhpRSlGgVS8toFkdAZG5lHSWqtHV9lChoBmgJaA9DCJZBtcEJiXFAlIaUUpRoFUvdaBZHQGRyuIhyKel1fZQoaAZoCWgPQwhoB1xXDD9zQJSGlFKUaBVL4WgWR0Bkc8X3xnWbdX2UKGgGaAloD0MI93ZLcsDQcUCUhpRSlGgVS9RoFkdAZHOf0VafSXV9lChoBmgJaA9DCH9Ma9OYH3NAlIaUUpRoFUv4aBZHQGR0F8PWhAZ1fZQoaAZoCWgPQwjE6LmFrjRzQJSGlFKUaBVL0GgWR0BkdFZNfw7UdX2UKGgGaAloD0MID9Qpjy7DcUCUhpRSlGgVS71oFkdAZHlBFd9lVnV9lChoBmgJaA9DCKhxb37D8m9AlIaUUpRoFUvOaBZHQGR83cHnln11fZQoaAZoCWgPQwi/KaxUEGpzQJSGlFKUaBVLvWgWR0Bkga925hBrdX2UKGgGaAloD0MIeLeyRCcYcUCUhpRSlGgVS8poFkdAZIM56t1ZDHV9lChoBmgJaA9DCFZl3xXB9XFAlIaUUpRoFUuqaBZHQGSE974SHuZ1fZQoaAZoCWgPQwj6QzNPLjBxQJSGlFKUaBVLsmgWR0Bkhiohpxm1dX2UKGgGaAloD0MIsW8nESHtckCUhpRSlGgVS8poFkdAZIvpN9H+ZXV9lChoBmgJaA9DCDPFHARdj3NAlIaUUpRoFUvDaBZHQGSNHoouwot1fZQoaAZoCWgPQwj0bFZ9rk9uQJSGlFKUaBVLxmgWR0BkjVBa9sabdX2UKGgGaAloD0MITYHMzqKLUECUhpRSlGgVS35oFkdAZI2u14Pf9HV9lChoBmgJaA9DCByastMPBm9AlIaUUpRoFUvNaBZHQGSPEQwsXi11fZQoaAZoCWgPQwjG/NzQFJ9xQJSGlFKUaBVL0WgWR0BkmVdmg8KYdX2UKGgGaAloD0MI4gD6fX/xcECUhpRSlGgVS79oFkdAZJpqC6H0snV9lChoBmgJaA9DCNDtJY0RDHBAlIaUUpRoFUu+aBZHQGSaiqp97Wx1fZQoaAZoCWgPQwg8SiU8IVJwQJSGlFKUaBVL2mgWR0BknxnezlcRdX2UKGgGaAloD0MI5IV0eMjYcECUhpRSlGgVS79oFkdAZKB6Q/5cknV9lChoBmgJaA9DCHKo34Vts3BAlIaUUpRoFUveaBZHQGSgt5le4Td1fZQoaAZoCWgPQwi5NlSMM0txQJSGlFKUaBVL1GgWR0BkqIG6f8MvdX2UKGgGaAloD0MIHogs0sRHSUCUhpRSlGgVS4VoFkdAZKp7sOXmeXV9lChoBmgJaA9DCGhAvRm1fXFAlIaUUpRoFUvWaBZHQGStxTjvNNd1fZQoaAZoCWgPQwiUS+MXHhJyQJSGlFKUaBVL0mgWR0BkroK6WgOCdX2UKGgGaAloD0MIcHztmaU1ckCUhpRSlGgVS8toFkdAZK6TIvJzUHV9lChoBmgJaA9DCPUUOUQcT3FAlIaUUpRoFUu2aBZHQGSykU9IPLB1fZQoaAZoCWgPQwgWbY5zW9hxQJSGlFKUaBVL3mgWR0Bks6jJuEVWdX2UKGgGaAloD0MIZFjFGxl7ckCUhpRSlGgVS8xoFkdAZLXhrFfiP3V9lChoBmgJaA9DCJNUppiDsG5AlIaUUpRoFUvJaBZHQGS281n/T9d1fZQoaAZoCWgPQwjHgOz1rmxxQJSGlFKUaBVL0WgWR0BkuDxEv0yydX2UKGgGaAloD0MIj4r/O2IWcUCUhpRSlGgVS61oFkdAZMKWmgrYoXV9lChoBmgJaA9DCMJQhxVurXBAlIaUUpRoFUvFaBZHQGTDCbDuSfV1fZQoaAZoCWgPQwhK7UW03SRzQJSGlFKUaBVL1WgWR0BkxUP8Q7LddX2UKGgGaAloD0MImpguxOr0cUCUhpRSlGgVS+FoFkdAZMkf29L6DXV9lChoBmgJaA9DCHEfuTUpJHFAlIaUUpRoFUveaBZHQGTO4Glhw2l1fZQoaAZoCWgPQwiTpkHRfKBxQJSGlFKUaBVLvmgWR0Bk0BbGFSKndX2UKGgGaAloD0MIchQgCuYcc0CUhpRSlGgVS+VoFkdAZNA1sLv1DnV9lChoBmgJaA9DCMAjKlR3zHJAlIaUUpRoFUu8aBZHQGTV+2/i5ut1fZQoaAZoCWgPQwhdFajFoKRxQJSGlFKUaBVL0mgWR0Bk1nP7el9CdX2UKGgGaAloD0MIC9P3GkI0cECUhpRSlGgVS8xoFkdAZNh3TNMXanV9lChoBmgJaA9DCHbicrwC53NAlIaUUpRoFUvNaBZHQGTZaE8JUo91fZQoaAZoCWgPQwiCixU1mO5wQJSGlFKUaBVL0mgWR0Bk3pK15Sm7dX2UKGgGaAloD0MICRUcXlDWckCUhpRSlGgVS7xoFkdAZN+8+RoysXV9lChoBmgJaA9DCNP1RNfFF3FAlIaUUpRoFUvJaBZHQGThF23azu51fZQoaAZoCWgPQwhJ2SJpN29xQJSGlFKUaBVL2WgWR0Bk4RwEQoTgdX2UKGgGaAloD0MIHLeYn9v1cUCUhpRSlGgVS95oFkdAZOQ5o4+8oXV9lChoBmgJaA9DCM5Q3PEmXU1AlIaUUpRoFUujaBZHQGTk5n13+uN1fZQoaAZoCWgPQwgSL0/nysJwQJSGlFKUaBVLxmgWR0Bk7rfWMCLddX2UKGgGaAloD0MIjWDj+ndHckCUhpRSlGgVS9RoFkdAZO9xRVIZqHV9lChoBmgJaA9DCD6w478AEXNAlIaUUpRoFUvNaBZHQGTz8BMi8nN1fZQoaAZoCWgPQwiES8ecJyJxQJSGlFKUaBVLxGgWR0Bk+SlxffGddX2UKGgGaAloD0MIflLt03EnckCUhpRSlGgVS8loFkdAZPkgSOBDonV9lChoBmgJaA9DCDsBTYRN/3BAlIaUUpRoFUvKaBZHQGT6kv9LpRp1fZQoaAZoCWgPQwgfEr73t1lxQJSGlFKUaBVLuGgWR0Bk/OgxrSE2dX2UKGgGaAloD0MIgIEgQIZAckCUhpRSlGgVS8JoFkdAZP5xwQ176nV9lChoBmgJaA9DCOj0vBtLWHFAlIaUUpRoFUu+aBZHQGUBDASFoL51fZQoaAZoCWgPQwgtW+uLROpwQJSGlFKUaBVLumgWR0BlBYnH/95ydX2UKGgGaAloD0MIrd9MTFcfc0CUhpRSlGgVS9poFkdAZQYB3A2ycHV9lChoBmgJaA9DCKuVCb/UHXNAlIaUUpRoFUvAaBZHQGUJmmk30f51fZQoaAZoCWgPQwiHNCpwcvJyQJSGlFKUaBVL3WgWR0BlDlQj2SMcdX2UKGgGaAloD0MIkXu6uiMccUCUhpRSlGgVS9hoFkdAZQ61YyO7x3V9lChoBmgJaA9DCIguqG/ZV3JAlIaUUpRoFUvTaBZHQGURpyhi9Zl1fZQoaAZoCWgPQwh5AmGnGKdzQJSGlFKUaBVL2mgWR0BlEm4Cp3otdX2UKGgGaAloD0MI/0C5bV/3ckCUhpRSlGgVS8hoFkdAZRlFRYRuj3V9lChoBmgJaA9DCJ6ayw2GCHNAlIaUUpRoFUvgaBZHQGUfF8G9pRJ1fZQoaAZoCWgPQwjBjv8CwWpxQJSGlFKUaBVLzmgWR0BlH6gh8pkPdX2UKGgGaAloD0MIVK2FWSjDckCUhpRSlGgVS7loFkdAZSHVp9JBgXV9lChoBmgJaA9DCLU1IhgH0XJAlIaUUpRoFUvHaBZHQGUjWbobGWF1fZQoaAZoCWgPQwhi2jf3V5B0QJSGlFKUaBVLz2gWR0BlJcX7+DODdX2UKGgGaAloD0MII4eIm9P6ckCUhpRSlGgVS7hoFkdAZSZcVQAMlXV9lChoBmgJaA9DCPorZK7MhXFAlIaUUpRoFUvGaBZHQGUn4tHxz7x1ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 1300,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.999,
 
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1651750341.7298923,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAECTHD6MSyw//mi0vUVNIb9jPDo+5q7DvQAAAAAAAAAAZquCvLHYqj/Froq9pjfevqVQAjylTFy8AAAAAAAAAABAcuK9wCCoPvgoVj7WI9O+F+SjvZ016T0AAAAAAAAAAE1IMj3bnX8/8woGPgY/Jb+wQwM+dQjlPQAAAAAAAAAAM1CWPTjLx7tuUVS7IDeWPEP4Ez3qfX29AACAPwAAAABQVG+++h91PxHctr7PICy/PBrevnSXur0AAAAAAAAAAACb/7yIxom8FHaJPSWyJL1WDuo9C6+TPgAAgD8AAIA/Zr7ouxRMqbp6UoS1L/jgr5JfgzoKw7Y0AACAPwAAgD/qjIy+cypJP/CerT0lYxy/88O6vkrHNT4AAAAAAAAAAKCNLr4sN34+JWn3Pt1Tsr4Xmao942KWPgAAAAAAAAAAmmEVPR+StDz6u8S+LmzWvtEweb6/7Ei+AACAPwAAAACaMTu7ctNVP+5kiDzfbxe/2RuxPIYFAj0AAAAAAAAAAECCPD5rCHM/oxuRPsxBE7+VtMs+yj+kPQAAAAAAAAAAeoycPlHmNz9LE3i9dUIqv+KbDD9pAi6+AAAAAAAAAABm0Qm9/6iyP9p+FL6p6p6+S83wPFA0L7wAAAAAAAAAADNFzT0chhs+7iSavk1M3L5FOma+3JbGvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxausbQr+c0CUhpRSlIwBbJRL4IwBdJRHQJKgtAZ88cN1fZQoaAZoCWgPQwiVRszs8ydxQJSGlFKUaBVLt2gWR0CSoSJJ5E+gdX2UKGgGaAloD0MIWrvtQvNmcUCUhpRSlGgVS8doFkdAkqGIuPFNtnV9lChoBmgJaA9DCBMM5xqmdHFAlIaUUpRoFUvSaBZHQJKhovf0mMR1fZQoaAZoCWgPQwgmipC6XUxxQJSGlFKUaBVLuWgWR0CSodvKU3XJdX2UKGgGaAloD0MIc/T4vU0rcUCUhpRSlGgVS8RoFkdAkqIFkUbkwXV9lChoBmgJaA9DCIF8CRXclHBAlIaUUpRoFUu9aBZHQJKjBfw7T2F1fZQoaAZoCWgPQwjlKavpukZxQJSGlFKUaBVL2GgWR0CSo1XRw6yTdX2UKGgGaAloD0MIZHlXPWDcc0CUhpRSlGgVS9toFkdAkqRPqHGjsXV9lChoBmgJaA9DCOdvQiGCmnJAlIaUUpRoFUvYaBZHQJKkXvuw5eZ1fZQoaAZoCWgPQwh6q65D9W1xQJSGlFKUaBVLu2gWR0CSpPNG3F1kdX2UKGgGaAloD0MI0GBT55FIcUCUhpRSlGgVS7JoFkdAkqUVCXyAhHV9lChoBmgJaA9DCO/+eK8aR3BAlIaUUpRoFUu8aBZHQJKlInc+JP91fZQoaAZoCWgPQwhZv5mYbjZyQJSGlFKUaBVLtmgWR0CSpVe3QUpNdX2UKGgGaAloD0MIzJvDtVoHc0CUhpRSlGgVS+hoFkdAkqWKiO/+KnV9lChoBmgJaA9DCPdynxzF5HNAlIaUUpRoFUvLaBZHQJLEuTX8O091fZQoaAZoCWgPQwiL4eoAiNtzQJSGlFKUaBVLv2gWR0CSxSd2gWaddX2UKGgGaAloD0MI7GtdaoRgc0CUhpRSlGgVS7VoFkdAksVOpbUwz3V9lChoBmgJaA9DCKYLsfrjGnNAlIaUUpRoFUu3aBZHQJLFeNjslcB1fZQoaAZoCWgPQwg2P/7SInNyQJSGlFKUaBVL8GgWR0CSxfJv5xiodX2UKGgGaAloD0MIW311VSAhb0CUhpRSlGgVS8loFkdAksZCamXPaHV9lChoBmgJaA9DCLk2VIyz7HBAlIaUUpRoFUvdaBZHQJLGnj6vaDh1fZQoaAZoCWgPQwhlFwyu+ctxQJSGlFKUaBVLwGgWR0CSxw73PAwgdX2UKGgGaAloD0MIsTIa+TyAckCUhpRSlGgVS9JoFkdAksfUoKD02HV9lChoBmgJaA9DCFG8ytqmbXBAlIaUUpRoFUu/aBZHQJLISH58BuJ1fZQoaAZoCWgPQwg1fuGVpFFxQJSGlFKUaBVLu2gWR0CSyO9MK1G9dX2UKGgGaAloD0MIo5BkVm8jckCUhpRSlGgVS91oFkdAkskq86FM7HV9lChoBmgJaA9DCAzqW+Y0snFAlIaUUpRoFUvGaBZHQJLJIZdfLLZ1fZQoaAZoCWgPQwiw/s9hvhdzQJSGlFKUaBVLwmgWR0CSyTKkl/pddX2UKGgGaAloD0MI6+Oh7y7PckCUhpRSlGgVS7BoFkdAkskpfMOf/XV9lChoBmgJaA9DCEJbzqX4BXNAlIaUUpRoFUuxaBZHQJLJU9+w1SB1fZQoaAZoCWgPQwg3N6YnLElyQJSGlFKUaBVL12gWR0CSyeU+s5n2dX2UKGgGaAloD0MIZM4z9qVtdECUhpRSlGgVS7xoFkdAksn9waR6nnV9lChoBmgJaA9DCFyq0haXknJAlIaUUpRoFUu4aBZHQJLKC8SPEKp1fZQoaAZoCWgPQwhI3jmUIZNxQJSGlFKUaBVLzmgWR0CSyrrc0tROdX2UKGgGaAloD0MIu9Vz0jtcckCUhpRSlGgVS81oFkdAkssyteUpu3V9lChoBmgJaA9DCBZQqKfPEnJAlIaUUpRoFUvAaBZHQJLLMqWkadd1fZQoaAZoCWgPQwjGi4UhMtNxQJSGlFKUaBVLzWgWR0CSy9iLl3hXdX2UKGgGaAloD0MIwLFnz2V/cECUhpRSlGgVS9BoFkdAksxp2U0N0HV9lChoBmgJaA9DCHmUSnjCf3BAlIaUUpRoFUu+aBZHQJLMswUQCjl1fZQoaAZoCWgPQwi2aWyvRWxyQJSGlFKUaBVLt2gWR0CSzPplSS/1dX2UKGgGaAloD0MIby2T4Xj6ckCUhpRSlGgVS6ZoFkdAks1bLhaTwHV9lChoBmgJaA9DCBZNZyfDRXJAlIaUUpRoFUvIaBZHQJLOMjv/io91fZQoaAZoCWgPQwhn170VCXtyQJSGlFKUaBVLy2gWR0CSzldxAB1cdX2UKGgGaAloD0MIOiNKe8NwckCUhpRSlGgVS7NoFkdAks56A8Swn3V9lChoBmgJaA9DCIpVgzC3KXJAlIaUUpRoFUvgaBZHQJLOpbkfcN91fZQoaAZoCWgPQwjd66S+bGVyQJSGlFKUaBVLwWgWR0CSzvlb/wRXdX2UKGgGaAloD0MIKQezCTChckCUhpRSlGgVS+VoFkdAks8vzSThYXV9lChoBmgJaA9DCDaVRWEXB3NAlIaUUpRoFUvLaBZHQJLPS9kBjnV1fZQoaAZoCWgPQwi78IPzKXtwQJSGlFKUaBVLumgWR0CSz5PTG5tndX2UKGgGaAloD0MIbvse9dfcckCUhpRSlGgVTQUBaBZHQJLP3a8Hv+h1fZQoaAZoCWgPQwii8UQQJyFyQJSGlFKUaBVLuWgWR0CS0ALgXMyKdX2UKGgGaAloD0MIXeDyWHOecECUhpRSlGgVS8ZoFkdAktBS7Ciyp3V9lChoBmgJaA9DCEaU9gZfCXFAlIaUUpRoFUu3aBZHQJLQm+/QBxR1fZQoaAZoCWgPQwgixQCJZuxxQJSGlFKUaBVLumgWR0CS0Ybg0j1PdX2UKGgGaAloD0MIrcJmgAsec0CUhpRSlGgVS7xoFkdAktHdOh0yQHV9lChoBmgJaA9DCF9/Ep/7fnFAlIaUUpRoFUvWaBZHQJLR+NNrTH91fZQoaAZoCWgPQwivBb03hkp0QJSGlFKUaBVL1GgWR0CS0umzSkTIdX2UKGgGaAloD0MIPV+zXHYbckCUhpRSlGgVS7poFkdAktMj1TR6W3V9lChoBmgJaA9DCCieswUEWHFAlIaUUpRoFUu4aBZHQJLTW8jAzpJ1fZQoaAZoCWgPQwiJesGnuWNyQJSGlFKUaBVLvWgWR0CS01siSq2jdX2UKGgGaAloD0MIlWOyuH+Uc0CUhpRSlGgVS8BoFkdAktO+e8PFvXV9lChoBmgJaA9DCKPLm8P123JAlIaUUpRoFUuzaBZHQJLT5QemvW91fZQoaAZoCWgPQwjIt3cNOtNyQJSGlFKUaBVLxGgWR0CS1GkD6nBMdX2UKGgGaAloD0MIyF2EKcrYcUCUhpRSlGgVS89oFkdAktRiyY5T63V9lChoBmgJaA9DCFH1K50PwHBAlIaUUpRoFUu7aBZHQJLUu2JBPbh1fZQoaAZoCWgPQwj/d0SFajdwQJSGlFKUaBVLxWgWR0CS1LW/JvHcdX2UKGgGaAloD0MIih2NQz3Uc0CUhpRSlGgVS8BoFkdAktVKoQ4CIXV9lChoBmgJaA9DCBzRPetaTHJAlIaUUpRoFUvUaBZHQJLVdaLXL/11fZQoaAZoCWgPQwind/F+XHRxQJSGlFKUaBVLrGgWR0CS1fTBZZB+dX2UKGgGaAloD0MIw35PrFNocUCUhpRSlGgVS9doFkdAktYrNB4UvnV9lChoBmgJaA9DCBAEyNBxHnFAlIaUUpRoFUvCaBZHQJLW9J4B3id1fZQoaAZoCWgPQwgkQ46tp4NwQJSGlFKUaBVL0WgWR0CS10umaYu1dX2UKGgGaAloD0MINbOWAhJ+cUCUhpRSlGgVS7ZoFkdAktfFo11nunV9lChoBmgJaA9DCDxLkBGQC3JAlIaUUpRoFUumaBZHQJLX+Hj6vaF1fZQoaAZoCWgPQwgzVMVU+pZyQJSGlFKUaBVLuGgWR0CS2A4GD+R6dX2UKGgGaAloD0MIufyH9NtLckCUhpRSlGgVS8hoFkdAkth4nndO7HV9lChoBmgJaA9DCKrTgayndHBAlIaUUpRoFUuzaBZHQJLYe5Gz8gp1fZQoaAZoCWgPQwgiizTxzqJxQJSGlFKUaBVL3mgWR0CS2KcBEKE4dX2UKGgGaAloD0MIzsKednj+cUCUhpRSlGgVS6xoFkdAktjRLXcxkHV9lChoBmgJaA9DCBrBxvVvQHFAlIaUUpRoFUu0aBZHQJLZCOJcgQp1fZQoaAZoCWgPQwjcEU4LXo9wQJSGlFKUaBVLwWgWR0CS2bC4BmwrdX2UKGgGaAloD0MI7zhFRzLyckCUhpRSlGgVS8NoFkdAktm5gb6xgXV9lChoBmgJaA9DCJaxoZt9hXFAlIaUUpRoFUutaBZHQJLZyur6tT11fZQoaAZoCWgPQwjDnKBNTrpyQJSGlFKUaBVLr2gWR0CS2gDdxhlUdX2UKGgGaAloD0MIaeVeYNa3cUCUhpRSlGgVS7JoFkdAktqKvA44qHV9lChoBmgJaA9DCGoTJ/c7BHJAlIaUUpRoFUu8aBZHQJLb6OYIBzV1fZQoaAZoCWgPQwhZTGw+7kNzQJSGlFKUaBVL3mgWR0CS3AJr+HafdX2UKGgGaAloD0MIsBu2LQoVc0CUhpRSlGgVS71oFkdAktw/En9ehXV9lChoBmgJaA9DCNKm6h4ZQ3JAlIaUUpRoFUuvaBZHQJLcXiQ1aW51fZQoaAZoCWgPQwjnqQ65WThyQJSGlFKUaBVLsGgWR0CS3RcjJMg2dX2UKGgGaAloD0MIE5oklhSXcUCUhpRSlGgVS8RoFkdAkt02C2+fy3V9lChoBmgJaA9DCFN5O8Kpk3NAlIaUUpRoFUvGaBZHQJLdL0/W1+l1fZQoaAZoCWgPQwgpXI/CtQNyQJSGlFKUaBVLsmgWR0CS3VKg7HQydX2UKGgGaAloD0MIwha7fRYLckCUhpRSlGgVS75oFkdAkt12ZVn27HV9lChoBmgJaA9DCAx3Loy0nXJAlIaUUpRoFUu/aBZHQJLeC7nPmgd1fZQoaAZoCWgPQwjQRUPG44FyQJSGlFKUaBVLzmgWR0CS3jBDXvphdX2UKGgGaAloD0MIA+55/vSxcUCUhpRSlGgVS7RoFkdAkt6AcDKYA3V9lChoBmgJaA9DCB4X1SIiOnBAlIaUUpRoFUu9aBZHQJLeolQdjoZ1fZQoaAZoCWgPQwj2B8ptO0ZxQJSGlFKUaBVLumgWR0CS3pZ75VOsdWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 1548,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.999,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ab56f4caf59c97ad8139fb9dacaba44adc4d1c74ae53323f927855bb4f770a7d
3
  size 84893
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5df5ba5c14d708d9cc701e7a46666fd0d76828c238d445791bbe129194ea6e2
3
  size 84893
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cc0d5ea822f8f3d70e76c7929e990831093fef67cad6ff19bc62f3e433e1d1ba
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58bf7563aed87bdd38c08b60784ce15a624d5fd6e458cabdf038936cb7e9e28a
3
  size 43201
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:118122b74db75a232a9759bf566e63c5466a636a640822b8fba88ebcf348fbfd
3
- size 180076
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fbf9b4b91de0cd1bf0a0bed05778e579486b58e68769b560a321372ee55fba9
3
+ size 181199
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 282.02283071796126, "std_reward": 22.455474163386626, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T11:31:08.792742"}
 
1
+ {"mean_reward": 296.6028621569299, "std_reward": 16.778559469847462, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T11:48:02.506838"}