dlantonia commited on
Commit
d6e8e10
1 Parent(s): 5fa7a75

End of training

Browse files
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/hubert-base-ls960
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: hubert-base-ls960-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.85
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # hubert-base-ls960-finetuned-gtzan
32
+
33
+ This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.7461
36
+ - Accuracy: 0.85
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 4
57
+ - eval_batch_size: 4
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 10
63
+ - mixed_precision_training: Native AMP
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 2.0275 | 1.0 | 225 | 1.8624 | 0.36 |
70
+ | 1.3649 | 2.0 | 450 | 1.4155 | 0.51 |
71
+ | 1.1545 | 3.0 | 675 | 1.2385 | 0.6 |
72
+ | 0.9293 | 4.0 | 900 | 0.9788 | 0.67 |
73
+ | 0.5855 | 5.0 | 1125 | 0.8809 | 0.7 |
74
+ | 0.2652 | 6.0 | 1350 | 0.9386 | 0.73 |
75
+ | 1.2178 | 7.0 | 1575 | 0.7286 | 0.81 |
76
+ | 0.1843 | 8.0 | 1800 | 1.2881 | 0.7 |
77
+ | 0.089 | 9.0 | 2025 | 0.4900 | 0.9 |
78
+ | 0.0928 | 10.0 | 2250 | 0.7461 | 0.85 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.41.2
84
+ - Pytorch 2.3.0+cu121
85
+ - Datasets 2.20.0
86
+ - Tokenizers 0.19.1
runs/Jul14_14-25-27_86e35ce60b9e/events.out.tfevents.1720967136.86e35ce60b9e.4898.1 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:38d4b455da52e71d9818b418422fc002e61fb4c21e8ec466a01f896ebd3009d5
3
- size 94423
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30526b165a68a082ea0de3abdd63dc573d646393282a6134c643a1a5f85c1e12
3
+ size 104595