--- license: apache-2.0 base_model: facebook/hubert-base-ls960 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: hubert-base-ls960-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.85 --- # hubert-base-ls960-finetuned-gtzan This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7461 - Accuracy: 0.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0275 | 1.0 | 225 | 1.8624 | 0.36 | | 1.3649 | 2.0 | 450 | 1.4155 | 0.51 | | 1.1545 | 3.0 | 675 | 1.2385 | 0.6 | | 0.9293 | 4.0 | 900 | 0.9788 | 0.67 | | 0.5855 | 5.0 | 1125 | 0.8809 | 0.7 | | 0.2652 | 6.0 | 1350 | 0.9386 | 0.73 | | 1.2178 | 7.0 | 1575 | 0.7286 | 0.81 | | 0.1843 | 8.0 | 1800 | 1.2881 | 0.7 | | 0.089 | 9.0 | 2025 | 0.4900 | 0.9 | | 0.0928 | 10.0 | 2250 | 0.7461 | 0.85 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1