File size: 2,037 Bytes
9935e82
9f678f3
9935e82
 
 
 
 
 
 
 
 
 
 
9f678f3
 
9935e82
 
 
 
 
 
 
 
 
34ff0d7
9935e82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92556bb
302ca49
 
9935e82
 
302ca49
9935e82
302ca49
 
9935e82
0294ff1
9935e82
34ff0d7
9935e82
 
 
34ff0d7
 
 
 
 
 
 
 
 
 
 
 
9935e82
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: cc-by-nc-4.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: HuggingFaceTB/SmolLM-360M-Instruct
datasets:
- generator
model-index:
- name: smolLM
  results: []
language:
- en
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# smolLM

This model is a fine-tuned version of [HuggingFaceTB/SmolLM-360M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-360M-Instruct) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8760

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.2721        | 0.9756 | 10   | 2.1262          |
| 2.0927        | 1.9512 | 20   | 2.0278          |
| 2.0071        | 2.9268 | 30   | 1.9690          |
| 1.9512        | 4.0    | 41   | 1.9282          |
| 1.9247        | 4.9756 | 51   | 1.9045          |
| 1.9024        | 5.9512 | 61   | 1.8897          |
| 1.88          | 6.9268 | 71   | 1.8809          |
| 1.8788        | 8.0    | 82   | 1.8767          |
| 1.8763        | 8.9756 | 92   | 1.8760          |
| 1.8735        | 9.7561 | 100  | 1.8760          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.1.0
- Datasets 2.18.0
- Tokenizers 0.19.1