File size: 2,037 Bytes
9935e82 9f678f3 9935e82 9f678f3 9935e82 34ff0d7 9935e82 92556bb 302ca49 9935e82 302ca49 9935e82 302ca49 9935e82 0294ff1 9935e82 34ff0d7 9935e82 34ff0d7 9935e82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: cc-by-nc-4.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: HuggingFaceTB/SmolLM-360M-Instruct
datasets:
- generator
model-index:
- name: smolLM
results: []
language:
- en
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# smolLM
This model is a fine-tuned version of [HuggingFaceTB/SmolLM-360M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-360M-Instruct) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8760
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.2721 | 0.9756 | 10 | 2.1262 |
| 2.0927 | 1.9512 | 20 | 2.0278 |
| 2.0071 | 2.9268 | 30 | 1.9690 |
| 1.9512 | 4.0 | 41 | 1.9282 |
| 1.9247 | 4.9756 | 51 | 1.9045 |
| 1.9024 | 5.9512 | 61 | 1.8897 |
| 1.88 | 6.9268 | 71 | 1.8809 |
| 1.8788 | 8.0 | 82 | 1.8767 |
| 1.8763 | 8.9756 | 92 | 1.8760 |
| 1.8735 | 9.7561 | 100 | 1.8760 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.1.0
- Datasets 2.18.0
- Tokenizers 0.19.1 |