--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1957.59 +/- 114.55 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) ```python import gym from stable_baselines3 import A2C from huggingface_sb3 import load_from_hub checkpoint = load_from_hub( repo_id="AntBulletEnv-v0", filename="a2c-AntBulletEnv-v0.zip", ) model = A2C.load(checkpoint) # Evaluate the agent and watch it eval_env = gym.make("AntBulletEnv-v0") mean_reward, std_reward = evaluate_policy( model, eval_env, render=True, n_eval_episodes=5, deterministic=True, warn=False ) print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") ```