dmis-lab commited on
Commit
731ac09
1 Parent(s): 91335a0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +104 -3
README.md CHANGED
@@ -1,3 +1,104 @@
1
- ---
2
- license: gpl-3.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: gpl-3.0
3
+ language:
4
+ - en
5
+ metrics:
6
+ - accuracy
7
+ base_model: dmis-lab/ANGEL_pretrained
8
+ ---
9
+
10
+ # Model Card for ANGEL_cometa
11
+ This model card provides detailed information about the ANGEL_cometa model, designed for biomedical entity linking.
12
+
13
+
14
+ # Model Details
15
+
16
+ #### Model Description
17
+ - **Developed by:** Chanhwi Kim, Hyunjae Kim, Sihyeon Park, Jiwoo Lee, Mujeen Sung, Jaewoo Kang
18
+ - **Model type:** Generative Biomedical Entity Linking Model
19
+ - **Language(s):** English
20
+ - **License:** GPL-3.0
21
+ - **Finetuned from model:** BART-large (Base architecture)
22
+
23
+ #### Model Sources
24
+
25
+ - **Github Repository:** https://github.com/dmis-lab/ANGEL
26
+ - **Paper:** https://arxiv.org/pdf/2408.16493
27
+
28
+
29
+ # Direct Use
30
+ ANGEL_cometa is a tool specifically designed for biomedical entity linking, with a focus on identifying and linking disease mentions within COMETA datasets.
31
+ To use this model, you need to set up a virtual environment and the inference code.
32
+ Start by cloning our [ANGEL GitHub repository](https://github.com/dmis-lab/ANGEL).
33
+ Then, run the following script to set up the environment:
34
+ ```bash
35
+ bash script/environment/set_environment.sh
36
+ ```
37
+
38
+ Then, if you want to run the model on a single sample, no preprocessing is required.
39
+ Simply execute the run_sample.sh script:
40
+
41
+ ```bash
42
+ bash script/inference/run_sample.sh cometa
43
+ ```
44
+
45
+ To modify the sample with your own example, refer to the [Direct Use](https://github.com/dmis-lab/ANGEL?tab=readme-ov-file#direct-use) section in our GitHub repository.
46
+ If you're interested in training or evaluating the model, check out the [Fine-tuning](https://github.com/dmis-lab/ANGEL?tab=readme-ov-file#fine-tuning) section and [Evaluation](https://github.com/dmis-lab/ANGEL?tab=readme-ov-file#evaluation) section.
47
+ # Training
48
+
49
+ #### Training Data
50
+ The model was trained on the COMETA dataset, which includes annotated disease entities.
51
+
52
+ #### Training Procedure
53
+ Positive-only Pre-training: Initial training using only positive examples, following the standard approach.
54
+ Negative-aware Training: Subsequent training incorporated negative examples to improve the model's discriminative capabilities.
55
+
56
+ # Evaluation
57
+
58
+ ### Testing Data
59
+ The model was evaluated using COMETA dataset.
60
+
61
+ ### Metrics
62
+ Accuracy at Top-1 (Acc@1): Measures the percentage of times the model's top prediction matches the correct entity.
63
+
64
+ ### Scores
65
+
66
+ <table border="1" cellspacing="0" cellpadding="5" style="width: 100%; text-align: center; border-collapse: collapse; margin-left: 0;">
67
+ <thead>
68
+ <tr>
69
+ <th><b>Dataset</b></th>
70
+ <th><b>BioSYN</b><br>(Sung et al., 2020)</th>
71
+ <th><b>SapBERT</b><br>(Liu et al., 2021)</th>
72
+ <th><b>GenBioEL</b><br>(Yuan et al., 2022b)</th>
73
+ <th><b>ANGEL<br>(Ours)</b></th>
74
+ </tr>
75
+ </thead>
76
+ <tbody>
77
+ <tr>
78
+ <td><b>COMETA</b></td>
79
+ <td>71.3</td>
80
+ <td>75.1</td>
81
+ <td>80.9</td>
82
+ <td><b>82.8</b></td>
83
+ </tr>
84
+ </tbody>
85
+ </table>
86
+
87
+ The scores of GenBioEL were reproduced.
88
+
89
+
90
+
91
+ # Citation
92
+ If you use the ANGEL_cometa model, please cite:
93
+
94
+ ```bibtex
95
+ @article{kim2024learning,
96
+ title={Learning from Negative Samples in Generative Biomedical Entity Linking},
97
+ author={Kim, Chanhwi and Kim, Hyunjae and Park, Sihyeon and Lee, Jiwoo and Sung, Mujeen and Kang, Jaewoo},
98
+ journal={arXiv preprint arXiv:2408.16493},
99
+ year={2024}
100
+ }
101
+ ```
102
+
103
+ # Contact
104
+ For questions or issues, please contact chanhwi_kim@korea.ac.kr.