|
import argparse |
|
import logging |
|
from torch.utils.data import Dataset, IterableDataset |
|
import gzip |
|
import json |
|
from transformers import Seq2SeqTrainer, AutoModelForSeq2SeqLM, AutoTokenizer, Seq2SeqTrainingArguments |
|
import sys |
|
from datetime import datetime |
|
import torch |
|
import random |
|
from shutil import copyfile |
|
import os |
|
import wandb |
|
import random |
|
import re |
|
from datasets import load_dataset |
|
import tqdm |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%Y-%m-%d %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--lang", required=True) |
|
parser.add_argument("--model_name", default="google/mt5-base") |
|
parser.add_argument("--epochs", default=4, type=int) |
|
parser.add_argument("--batch_size", default=32, type=int) |
|
parser.add_argument("--max_source_length", default=320, type=int) |
|
parser.add_argument("--max_target_length", default=64, type=int) |
|
parser.add_argument("--eval_size", default=1000, type=int) |
|
|
|
args = parser.parse_args() |
|
|
|
wandb.init(project="doc2query", name=f"{args.lang}-{args.model_name}") |
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
|
|
queries = {} |
|
for row in tqdm.tqdm(load_dataset('unicamp-dl/mmarco', f'queries-{args.lang}')['train']): |
|
queries[row['id']] = row['text'] |
|
|
|
""" |
|
collection = {} |
|
for row in tqdm.tqdm(load_dataset('unicamp-dl/mmarco', f'collection-{args.lang}')['collection']): |
|
collection[row['id']] = row['text'] |
|
""" |
|
collection = load_dataset('unicamp-dl/mmarco', f'collection-{args.lang}')['collection'] |
|
|
|
train_pairs = [] |
|
eval_pairs = [] |
|
|
|
|
|
with open('qrels.train.tsv') as fIn: |
|
for line in fIn: |
|
qid, _, did, _ = line.strip().split("\t") |
|
|
|
qid = int(qid) |
|
did = int(did) |
|
|
|
assert did == collection[did]['id'] |
|
text = collection[did]['text'] |
|
|
|
pair = (queries[qid], text) |
|
if len(eval_pairs) < args.eval_size: |
|
eval_pairs.append(pair) |
|
else: |
|
train_pairs.append(pair) |
|
|
|
|
|
print(f"Train pairs: {len(train_pairs)}") |
|
|
|
|
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(args.model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(args.model_name) |
|
|
|
save_steps = 1000 |
|
|
|
output_dir = 'output/'+args.lang+'-'+args.model_name.replace("/", "-")+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") |
|
print("Output dir:", output_dir) |
|
|
|
|
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
train_script_path = os.path.join(output_dir, 'train_script.py') |
|
copyfile(__file__, train_script_path) |
|
with open(train_script_path, 'a') as fOut: |
|
fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv)) |
|
|
|
|
|
|
|
training_args = Seq2SeqTrainingArguments( |
|
output_dir=output_dir, |
|
bf16=True, |
|
|
|
|
|
per_device_train_batch_size=args.batch_size, |
|
evaluation_strategy="steps", |
|
save_steps=save_steps, |
|
logging_steps=100, |
|
eval_steps=save_steps, |
|
warmup_steps=1000, |
|
save_total_limit=1, |
|
num_train_epochs=args.epochs, |
|
report_to="wandb", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
print("Input:", train_pairs[0][1]) |
|
print("Target:", train_pairs[0][0]) |
|
|
|
print("Input:", eval_pairs[0][1]) |
|
print("Target:", eval_pairs[0][0]) |
|
|
|
|
|
def data_collator(examples): |
|
targets = [row[0] for row in examples] |
|
inputs = [row[1] for row in examples] |
|
label_pad_token_id = -100 |
|
|
|
model_inputs = tokenizer(inputs, max_length=args.max_source_length, padding=True, truncation=True, return_tensors='pt', pad_to_multiple_of=8 if training_args.fp16 else None) |
|
|
|
|
|
with tokenizer.as_target_tokenizer(): |
|
labels = tokenizer(targets, max_length=args.max_target_length, padding=True, truncation=True, pad_to_multiple_of=8 if training_args.fp16 else None) |
|
|
|
|
|
labels["input_ids"] = [ |
|
[(l if l != tokenizer.pad_token_id else label_pad_token_id) for l in label] for label in labels["input_ids"] |
|
] |
|
|
|
|
|
model_inputs["labels"] = torch.tensor(labels["input_ids"]) |
|
return model_inputs |
|
|
|
|
|
trainer = Seq2SeqTrainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=train_pairs, |
|
eval_dataset=eval_pairs, |
|
tokenizer=tokenizer, |
|
data_collator=data_collator |
|
) |
|
|
|
|
|
train_result = trainer.train() |
|
trainer.save_model() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
|
|
|