--- library_name: transformers language: - zh license: apache-2.0 base_model: openai/whisper-base tags: - hf-asr-leaderboard - generated_from_trainer datasets: - aimpower/mandarin_stutter_speech metrics: - wer model-index: - name: Whisper Base ZH - Dongim Lee results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: AImpower Mandarin Stutter Speech type: aimpower/mandarin_stutter_speech config: zh split: test metrics: - name: Wer type: wer value: 87.24489795918367 --- # Whisper Base ZH - Dongim Lee This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the AImpower Mandarin Stutter Speech dataset. It achieves the following results on the evaluation set: - Loss: 0.4500 - Wer: 87.2449 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2036 | 2.0704 | 1000 | 0.3756 | 86.5816 | | 0.0885 | 4.1408 | 2000 | 0.3903 | 86.2245 | | 0.0367 | 6.2112 | 3000 | 0.4295 | 86.8878 | | 0.0242 | 8.2816 | 4000 | 0.4500 | 87.2449 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1