--- base_model: openai/whisper-small datasets: - mozilla-foundation/common_voice_17_0 language: - uz library_name: transformers license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: Whisper Small Uz - Doniyor Halilov results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: uz split: test args: 'config: uz, split: test' metrics: - type: wer value: 54.74920162871594 name: Wer --- # Whisper Small Uz - Doniyor Halilov This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 1.0147 - Wer: 54.7492 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.612 | 0.0132 | 100 | 1.2551 | 69.5533 | | 1.1271 | 0.0264 | 200 | 1.0147 | 54.7492 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu118 - Datasets 3.0.1 - Tokenizers 0.20.1