File size: 2,899 Bytes
c9bccb0 15e190c 5358d40 c9bccb0 15e190c 5358d40 15e190c 5358d40 15e190c 5358d40 15e190c c9bccb0 15e190c c9bccb0 15e190c 5358d40 15e190c c9bccb0 15e190c c9bccb0 15e190c c9bccb0 15e190c c9bccb0 15e190c c9bccb0 15e190c c9bccb0 15e190c c9bccb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- fleurs
metrics:
- wer
model-index:
- name: whisper-small-amet
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fleurs
type: fleurs
config: am_et
split: validation
args: am_et
metrics:
- name: Wer
type: wer
value: 100.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-amet
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 6.8012
- Wer: 100.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.9013 | 100.0 | 100 | 2.7051 | 276.0 |
| 0.0002 | 200.0 | 200 | 3.7415 | 334.6667 |
| 0.0001 | 300.0 | 300 | 3.8402 | 117.3333 |
| 0.0001 | 400.0 | 400 | 3.8931 | 340.0 |
| 0.0001 | 500.0 | 500 | 4.0671 | 397.3333 |
| 0.0001 | 600.0 | 600 | 4.2844 | 137.3333 |
| 0.0 | 700.0 | 700 | 4.4697 | 289.3333 |
| 0.0 | 800.0 | 800 | 4.6278 | 449.3333 |
| 0.0 | 900.0 | 900 | 4.7794 | 678.6667 |
| 0.0405 | 1000.0 | 1000 | 4.6769 | 261.3333 |
| 0.0002 | 1100.0 | 1100 | 5.4995 | 100.0 |
| 0.0002 | 1200.0 | 1200 | 6.0033 | 100.0 |
| 0.0002 | 1300.0 | 1300 | 6.2884 | 100.0 |
| 0.0002 | 1400.0 | 1400 | 6.4744 | 100.0 |
| 0.0002 | 1500.0 | 1500 | 6.5964 | 100.0 |
| 0.0001 | 1600.0 | 1600 | 6.6792 | 100.0 |
| 0.0001 | 1700.0 | 1700 | 6.7370 | 100.0 |
| 0.0001 | 1800.0 | 1800 | 6.7735 | 100.0 |
| 0.0001 | 1900.0 | 1900 | 6.7958 | 100.0 |
| 0.0001 | 2000.0 | 2000 | 6.8012 | 100.0 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|