File size: 2,899 Bytes
c9bccb0
 
 
 
 
15e190c
5358d40
 
c9bccb0
15e190c
5358d40
 
 
 
 
15e190c
 
5358d40
15e190c
5358d40
 
 
 
15e190c
c9bccb0
 
 
 
 
15e190c
c9bccb0
15e190c
5358d40
15e190c
 
c9bccb0
 
 
15e190c
c9bccb0
 
 
15e190c
c9bccb0
 
 
15e190c
c9bccb0
 
 
 
 
 
 
 
 
 
 
 
 
15e190c
c9bccb0
 
 
 
15e190c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9bccb0
 
 
 
 
15e190c
 
c9bccb0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- fleurs
metrics:
- wer
model-index:
- name: whisper-small-amet
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: fleurs
      type: fleurs
      config: am_et
      split: validation
      args: am_et
    metrics:
    - name: Wer
      type: wer
      value: 100.0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-small-amet

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 6.8012
- Wer: 100.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer      |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.9013        | 100.0  | 100  | 2.7051          | 276.0    |
| 0.0002        | 200.0  | 200  | 3.7415          | 334.6667 |
| 0.0001        | 300.0  | 300  | 3.8402          | 117.3333 |
| 0.0001        | 400.0  | 400  | 3.8931          | 340.0    |
| 0.0001        | 500.0  | 500  | 4.0671          | 397.3333 |
| 0.0001        | 600.0  | 600  | 4.2844          | 137.3333 |
| 0.0           | 700.0  | 700  | 4.4697          | 289.3333 |
| 0.0           | 800.0  | 800  | 4.6278          | 449.3333 |
| 0.0           | 900.0  | 900  | 4.7794          | 678.6667 |
| 0.0405        | 1000.0 | 1000 | 4.6769          | 261.3333 |
| 0.0002        | 1100.0 | 1100 | 5.4995          | 100.0    |
| 0.0002        | 1200.0 | 1200 | 6.0033          | 100.0    |
| 0.0002        | 1300.0 | 1300 | 6.2884          | 100.0    |
| 0.0002        | 1400.0 | 1400 | 6.4744          | 100.0    |
| 0.0002        | 1500.0 | 1500 | 6.5964          | 100.0    |
| 0.0001        | 1600.0 | 1600 | 6.6792          | 100.0    |
| 0.0001        | 1700.0 | 1700 | 6.7370          | 100.0    |
| 0.0001        | 1800.0 | 1800 | 6.7735          | 100.0    |
| 0.0001        | 1900.0 | 1900 | 6.7958          | 100.0    |
| 0.0001        | 2000.0 | 2000 | 6.8012          | 100.0    |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2