Text Classification
Transformers
Safetensors
bert
lid
Language Identification
African Languages
Inference Endpoints
ThapeloAndrewSindane commited on
Commit
6adad0e
1 Parent(s): 1244426

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +205 -6
README.md CHANGED
@@ -1,10 +1,209 @@
1
- This Model Performs Language Identification for all South African languages (Sepedi (nso), Sesotho(sot), Setswana(tsn), Xitsonga(tso), Isindebele(nr), Tshivenda(ven), IsiXhosa(xho), IsiZulu(zul), IsiSwati(ssw), Afrikaans(af), and English(en)).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  The source data used to train the model came from the paper 'Preparing Vuk...' referenced below:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
- # Model:
5
- The model used is a bert model trained to detect all 11 South African languages.
6
-
7
 
8
- # References
9
 
10
- * Lastrucci, R., Dzingirai, I., Rajab, J., Madodonga, A., Shingange, M., Njini, D. and Marivate, V., 2023. Preparing the Vuk'uzenzele and ZA-gov-multilingual South African multilingual corpora. arXiv preprint arXiv:2303.03750.
 
1
+ ---
2
+ # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
3
+ # Doc / guide: https://huggingface.co/docs/hub/model-cards
4
+ {}
5
+ ---
6
+
7
+ # Model Card for Model ID
8
+
9
+ <!-- Provide a quick summary of what the model is/does. -->
10
+
11
+ This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
12
+
13
+ ## Model Details
14
+
15
+ ### Model Description
16
+
17
+ <!-- Provide a longer summary of what this model is. -->
18
+
19
+
20
+
21
+ - **Developed by:** Thapelo Sindane
22
+ - **Shared by [optional]:** DSFSI
23
+ - **Model type:** BERT
24
+ - **Language(s) (NLP):** Sepedi (nso), Sesotho(sot), Setswana(tsn), Xitsonga(tso), Isindebele(nr), Tshivenda(ven), IsiXhosa(xho), IsiZulu(zul), IsiSwati(ssw), Afrikaans(af), and English(en)
25
+ - **License:** CC
26
+ - **Finetuned from model [optional]:** N/A
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ Models must be used for language identification of the South African languages identified above
39
+
40
+ ### Direct Use
41
+
42
+ LID for low-resourced languages
43
+
44
+ ### Downstream Use [optional]
45
+
46
+ Language data filtering and identification
47
+
48
+ [More Information Needed]
49
+
50
+ ### Out-of-Scope Use
51
+
52
+ Language detection in code-switched data.
53
+
54
+ [More Information Needed]
55
+
56
+ ## Bias, Risks, and Limitations
57
+ Requires GPU to run fast
58
+
59
+ [More Information Needed]
60
+
61
+ ### Recommendations
62
+
63
+ Do not use for sensitive tasks. Model at an infant stage.
64
+
65
+ ## How to Get Started with the Model
66
+
67
+ Use the code below to get started with the model.
68
+
69
+
70
+
71
+
72
+ ## Training Details
73
+
74
+ ### Training Data
75
+
76
  The source data used to train the model came from the paper 'Preparing Vuk...' referenced below:
77
+ * Lastrucci, R., Dzingirai, I., Rajab, J., Madodonga, A., Shingange, M., Njini, D. and Marivate, V., 2023. Preparing the Vuk'uzenzele and ZA-gov-multilingual South African multilingual corpora. arXiv preprint arXiv:2303.03750.
78
+
79
+ Number of sentences in datasets:
80
+ 'nso': 5007,
81
+ 'tsn': 4851,
82
+ 'sot': 5075,
83
+ 'xho': 5219,
84
+ 'zul': 5103,
85
+ 'nbl': 5600,
86
+ 'ssw': 5210,
87
+ 'ven': 5119,
88
+ 'tso': 5193,
89
+ 'af': 5252,
90
+ 'eng': 5552
91
+ Train Test split: Train: 70% of minimum, 15% of minimum size, Dev: remaining sample
92
+
93
+
94
+ ### Training Procedure
95
+
96
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
97
+
98
+ #### Preprocessing [optional]
99
+
100
+ [More Information Needed]
101
+
102
+
103
+ #### Training Hyperparameters
104
+
105
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
106
+
107
+ #### Speeds, Sizes, Times [optional]
108
+
109
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
110
+
111
+ [More Information Needed]
112
+
113
+ ## Evaluation
114
+
115
+ <!-- This section describes the evaluation protocols and provides the results. -->
116
+
117
+ ### Testing Data, Factors & Metrics
118
+
119
+ #### Testing Data
120
+
121
+ <!-- This should link to a Dataset Card if possible. -->
122
+
123
+ [More Information Needed]
124
+
125
+ #### Factors
126
+
127
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
128
+
129
+ [More Information Needed]
130
+
131
+ #### Metrics
132
+
133
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
134
+
135
+ [More Information Needed]
136
+
137
+ ### Results
138
+
139
+ [More Information Needed]
140
+
141
+ #### Summary
142
+
143
+
144
+
145
+ ## Model Examination [optional]
146
+
147
+ <!-- Relevant interpretability work for the model goes here -->
148
+
149
+ [More Information Needed]
150
+
151
+ ## Environmental Impact
152
+
153
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
154
+
155
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
156
+
157
+ - **Hardware Type:** [More Information Needed]
158
+ - **Hours used:** [More Information Needed]
159
+ - **Cloud Provider:** [More Information Needed]
160
+ - **Compute Region:** [More Information Needed]
161
+ - **Carbon Emitted:** [More Information Needed]
162
+
163
+ ## Technical Specifications [optional]
164
+
165
+ ### Model Architecture and Objective
166
+
167
+ [More Information Needed]
168
+
169
+ ### Compute Infrastructure
170
+
171
+ [More Information Needed]
172
+
173
+ #### Hardware
174
+
175
+ [More Information Needed]
176
+
177
+ #### Software
178
+
179
+ [More Information Needed]
180
+
181
+ ## Citation [optional]
182
+
183
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
184
+
185
+ **BibTeX:**
186
+
187
+ [More Information Needed]
188
+
189
+ **APA:**
190
+
191
+ [More Information Needed]
192
+
193
+ ## Glossary [optional]
194
+
195
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
196
+
197
+ [More Information Needed]
198
+
199
+ ## More Information [optional]
200
+
201
+ [More Information Needed]
202
+
203
+ ## Model Card Authors [optional]
204
 
205
+ [More Information Needed]
 
 
206
 
207
+ ## Model Card Contact
208
 
209
+ [More Information Needed]