dsrestrepo commited on
Commit
ccfec8d
1 Parent(s): 1ba9cfe

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -0
README.md CHANGED
@@ -1,3 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
 
1
+ # Model Card: Labrador Transformer Model
2
+
3
+ ## Model Overview
4
+ Labrador is a transformer-based machine learning model pre-trained on a masked language modeling (MLM) task. It is designed to analyze clinical laboratory data, focusing on morning routine lab values from the MIMIC IV dataset. The model aims to understand and predict laboratory test outcomes, providing insights for clinical informatics applications.
5
+
6
+ ## Intended Use
7
+ - **Primary Application:** Research and analysis in clinical informatics, with a focus on laboratory data interpretation and prediction.
8
+ - **Target Users:** Researchers, data scientists, and healthcare professionals with expertise in machine learning and clinical data.
9
+
10
+ ## Model/Data Specifications
11
+ - **Input Data:** Laboratory values including Bicarbonate (Bic), Creatinine (Crt), Potassium (Pot), Sodium (Sod), Urea (Ure), Hemoglobin (Hgb), Platelets (Plt), and White Blood Cell count (Wbc).
12
+ - **Model Outputs:** Predictive outputs for laboratory values, provided as both categorical and continuous data points.
13
+
14
+ ## Training Data
15
+ The model leverages anonymized data from the MIMIC IV dataset, specifically focusing on routine morning lab values from patients at Beth Israel Deaconess Medical Center.
16
+
17
+ ## Model Architecture & Parameters
18
+ - **Embedding Dimension:** 756
19
+ - **Hidden Dimension:** 756
20
+ - **Transformer Heads:** 4
21
+ - **Number of Blocks:** 10
22
+ - **Feedforward Dimension:** 1024
23
+ - **Dropout Rate:** 0.3
24
+ - **Activation:** ReLU
25
+
26
+ ## Training Details
27
+ - **Optimizer:** Adam
28
+ - **Epochs:** 12
29
+ - **Learning Rate:** 8e-6
30
+ - **Batch Size:** 512
31
+ - **Masking Ratio:** 40%
32
+
33
+ ## Limitations & Bias
34
+ - **Data Source Bias:** The training data from a single healthcare institution may not be representative of broader populations.
35
+ - **Analytical Bias:** The focus on specific lab values may not capture the full spectrum of patient health.
36
+ - **Generalization:** The model's performance may vary across different healthcare settings and patient demographics.
37
+
38
+ ## Ethical Considerations
39
+ - **Data Privacy:** Users must adhere to ethical standards and privacy laws when applying the model to sensitive health information.
40
+ - **Clinical Decision Making:** The model's predictions should complement, not replace, clinical judgment and patient-specific considerations.
41
+
42
+ ## Acknowledgements
43
+ This work was supported by MIT Critical Data and utilizes the MIMIC IV dataset. We thank all contributors to the MIMIC project and acknowledge the patients and healthcare providers who made this research possible.
44
+
45
+ ## Model Details
46
+ - **Name:** Labrador
47
+ - **Version:** 1.0
48
+ - **Release Date:** January 28, 2024
49
+ - **Developer:** David Restrepo
50
+ - **Affiliation:** MIT Critical Data
51
+ - **Contact:** davidres@mit.edu
52
+
53
+ ## License
54
+ This model is released under the MIT License.
55
+
56
  ---
57
  license: mit
58
  ---