ducthinh7 commited on
Commit
89f772f
·
verified ·
1 Parent(s): 1d86f35

Upload 3 files

Browse files

upload file model

Files changed (4) hide show
  1. .gitattributes +1 -0
  2. Trained_after_EFF0.keras +3 -0
  3. main.py +78 -0
  4. requirements.txt +7 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Trained_after_EFF0.keras filter=lfs diff=lfs merge=lfs -text
Trained_after_EFF0.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95c1692e95d27ee9f3893619bdf784df523f35d13d57e440151d164a7a782776
3
+ size 39075502
main.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, UploadFile, File
2
+ from fastapi.responses import JSONResponse
3
+ from fastapi.middleware.cors import CORSMiddleware
4
+ from fastapi.encoders import jsonable_encoder
5
+ from tensorflow.keras.models import load_model
6
+ from tensorflow.keras.preprocessing.image import load_img, img_to_array
7
+ from PIL import Image
8
+
9
+ import tensorflow.keras.backend as K
10
+ import os
11
+ import uvicorn
12
+ import numpy as np
13
+
14
+ # Initialize FastAPI app
15
+ app = FastAPI()
16
+ origins = ['*']
17
+
18
+ app.add_middleware(
19
+ CORSMiddleware,
20
+ allow_origins=origins,
21
+ allow_credentials=True,
22
+ allow_methods=["*"],
23
+ allow_headers=["*"],
24
+ )
25
+
26
+ # Custom F1 score function
27
+ def f1_score(y_true, y_pred):
28
+ precision = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) / K.maximum(
29
+ K.sum(K.round(K.clip(y_pred, 0, 1))), K.epsilon()
30
+ )
31
+ recall = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) / K.maximum(
32
+ K.sum(K.round(K.clip(y_true, 0, 1))), K.epsilon()
33
+ )
34
+ return 2 * (precision * recall) / (precision + recall + K.epsilon())
35
+
36
+ # Load model
37
+ MODEL_PATH = "Trained_after_EFF0.keras" # Ensure the path is correct
38
+ model = load_model(MODEL_PATH, custom_objects={'f1_score': f1_score})
39
+
40
+ # Image size for the model
41
+ IMAGE_SIZE = 224
42
+
43
+ # Preprocess image
44
+ def preprocess_image(image_path, target_size):
45
+ image = load_img(image_path, target_size=(target_size, target_size))
46
+ image_array = img_to_array(image)
47
+ image_array = np.expand_dims(image_array, axis=0)
48
+ return image_array
49
+
50
+ # API to predict image
51
+ @app.post("/predict")
52
+ async def predict_image(file: UploadFile = File(...)):
53
+ try:
54
+ upload_dir = "./uploads"
55
+ os.makedirs(upload_dir, exist_ok=True)
56
+ file_path = os.path.join(upload_dir, file.filename)
57
+ with open(file_path, "wb") as buffer:
58
+ buffer.write(await file.read())
59
+
60
+ image_array = preprocess_image(file_path, target_size=IMAGE_SIZE)
61
+
62
+ prediction = model.predict(image_array)
63
+ predicted_label = int(np.argmax(prediction))
64
+ confidence = float(np.max(prediction))
65
+
66
+ os.remove(file_path)
67
+
68
+ return JSONResponse(
69
+ content=jsonable_encoder(
70
+ {"predicted_label": predicted_label, "confidence": confidence}
71
+ )
72
+ )
73
+ except Exception as e:
74
+ return JSONResponse(content=jsonable_encoder({"error": str(e)}), status_code=500)
75
+
76
+ # Run FastAPI server
77
+ if __name__ == '__main__':
78
+ uvicorn.run(app, host="0.0.0.0", port=8002)
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ fastapi
2
+ uvicorn
3
+ pyngrok
4
+ tensorflow
5
+ keras
6
+ python-multipart
7
+ Pillow