--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: mymodel-classify-category-news results: [] pipeline_tag: text-classification widget: - text: "I love football so much" example_title: "Thời sự" - text: "I don't really like this type of food" example_title: "Thời sự" --- # mymodel-classify-category-news This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0370 - F1: 0.9443 - Roc Auc: 0.9677 - Accuracy: 0.9401 ## Model description Predict type of Vietnamese news :D ## Intended uses & limitations Input limit is 512 tokens so, when model try to predict long text it will error ``` from transformers import pipeline # Split chunk with 512 token (max_len of tokenizer) chunk_size = 512 chunks = [prompt[i:i + chunk_size] for i in range(0, len(prompt), chunk_size)] # pipeline to call model uwu pipe = pipeline("text-classification", model="duwuonline/mymodel-classify-category-news") # Create list to save predict results = [] # Call model to predict small chunk and save them in list for chunk in chunks: result = pipe(chunk) results.append(result) # Function to get most common label def get_most_common_label(results_list): label_counts = {} for result in results_list: label = result[0]['label'] label_counts[label] = label_counts.get(label, 0) + 1 most_common_label = max(label_counts, key=label_counts.get) return most_common_label # call funtion get_most_common_label most_common_label = get_most_common_label(results) print("The most label appear is:", most_common_label) ``` ## Training and evaluation data I will update later ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | No log | 1.0 | 225 | 0.0466 | 0.9354 | 0.9560 | 0.9157 | | No log | 2.0 | 450 | 0.0505 | 0.9215 | 0.9526 | 0.9113 | | 0.0418 | 3.0 | 675 | 0.0426 | 0.9330 | 0.9607 | 0.9268 | | 0.0418 | 4.0 | 900 | 0.0397 | 0.9410 | 0.9664 | 0.9379 | | 0.0202 | 5.0 | 1125 | 0.0370 | 0.9443 | 0.9677 | 0.9401 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3