--- license: mit base_model: microsoft/deberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: deberta-finetuned results: [] --- # deberta-finetuned This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2989 - Accuracy: 0.9062 - F1: 0.9333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 180 | 0.3227 | 0.8781 | 0.9150 | | No log | 2.0 | 360 | 0.3293 | 0.8562 | 0.8940 | | 0.3756 | 3.0 | 540 | 0.3180 | 0.8906 | 0.9210 | | 0.3756 | 4.0 | 720 | 0.2866 | 0.9094 | 0.9357 | | 0.3756 | 5.0 | 900 | 0.2989 | 0.9062 | 0.9333 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1