--- license: mit base_model: microsoft/deberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: deberta-finetuned results: [] --- # deberta-finetuned This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3200 - Accuracy: 0.8906 - F1: 0.9212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 160 | 0.3912 | 0.8609 | 0.9046 | | No log | 2.0 | 320 | 0.3005 | 0.8875 | 0.9167 | | No log | 3.0 | 480 | 0.3223 | 0.8891 | 0.9175 | | 0.3952 | 4.0 | 640 | 0.3336 | 0.8859 | 0.9140 | | 0.3952 | 5.0 | 800 | 0.3200 | 0.8906 | 0.9212 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1