--- license: mit base_model: microsoft/deberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: deberta-finetuned results: [] --- # deberta-finetuned This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2816 - Accuracy: 0.9196 - F1: 0.9437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4227 | 1.0 | 574 | 0.2411 | 0.9108 | 0.9390 | | 0.2574 | 2.0 | 1148 | 0.2203 | 0.9196 | 0.9434 | | 0.2273 | 3.0 | 1722 | 0.2734 | 0.9098 | 0.9358 | | 0.2048 | 4.0 | 2296 | 0.2758 | 0.9186 | 0.9431 | | 0.1746 | 5.0 | 2870 | 0.2816 | 0.9196 | 0.9437 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1