File size: 1,666 Bytes
722ecfb
d6626e1
722ecfb
bfdf84e
722ecfb
 
 
 
 
 
 
 
 
 
 
 
 
 
bfdf84e
722ecfb
d6626e1
 
722ecfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
435667a
722ecfb
 
 
 
 
 
 
 
 
a68388e
 
d6626e1
 
 
 
 
722ecfb
 
 
 
d6626e1
722ecfb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
library_name: transformers
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: deberta_textclassification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# deberta_textclassification

This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4593
- Accuracy: 0.9130

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 427  | 0.2632          | 0.8933   |
| 0.3689        | 2.0   | 854  | 0.2377          | 0.9196   |
| 0.2019        | 3.0   | 1281 | 0.2978          | 0.9117   |
| 0.1298        | 4.0   | 1708 | 0.4182          | 0.9144   |
| 0.076         | 5.0   | 2135 | 0.4593          | 0.9130   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1