|
--- |
|
license: other |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
inference: false |
|
tags: |
|
- transformers |
|
- gguf |
|
- imatrix |
|
- LongWriter-llama3.1-8b |
|
--- |
|
Quantizations of https://huggingface.co/THUDM/LongWriter-llama3.1-8b |
|
|
|
|
|
### Inference Clients/UIs |
|
* [llama.cpp](https://github.com/ggerganov/llama.cpp) |
|
* [KoboldCPP](https://github.com/LostRuins/koboldcpp) |
|
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui) |
|
* [ollama](https://github.com/ollama/ollama) |
|
|
|
|
|
--- |
|
|
|
# From original readme |
|
|
|
LongWriter-llama3.1-8b is trained based on [Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B), and is capable of generating 10,000+ words at once. |
|
|
|
Environment: `transformers>=4.43.0` |
|
|
|
Please ahere to the prompt template (system prompt is optional): `<<SYS>>\n{system prompt}\n<</SYS>>\n\n[INST]{query1}[/INST]{response1}[INST]{query2}[/INST]{response2}...` |
|
|
|
A simple demo for deployment of the model: |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/LongWriter-llama3.1-8b", trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained("THUDM/LongWriter-llama3.1-8b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto") |
|
model = model.eval() |
|
query = "Write a 10000-word China travel guide" |
|
prompt = f"[INST]{query}[/INST]" |
|
input = tokenizer(prompt, truncation=False, return_tensors="pt").to(device) |
|
context_length = input.input_ids.shape[-1] |
|
output = model.generate( |
|
**input, |
|
max_new_tokens=32768, |
|
num_beams=1, |
|
do_sample=True, |
|
temperature=0.5, |
|
)[0] |
|
response = tokenizer.decode(output[context_length:], skip_special_tokens=True) |
|
print(response) |
|
``` |
|
You can also deploy the model with [vllm](https://github.com/vllm-project/vllm), which allows 10,000+ words generation within a minute. Here is an example code: |
|
```python |
|
model = LLM( |
|
model= "THUDM/LongWriter-llama3.1-8b", |
|
dtype="auto", |
|
trust_remote_code=True, |
|
tensor_parallel_size=1, |
|
max_model_len=32768, |
|
gpu_memory_utilization=0.5, |
|
) |
|
tokenizer = model.get_tokenizer() |
|
generation_params = SamplingParams( |
|
temperature=0.5, |
|
top_p=0.8, |
|
top_k=50, |
|
max_tokens=32768, |
|
repetition_penalty=1, |
|
) |
|
query = "Write a 10000-word China travel guide" |
|
prompt = f"[INST]{query}[/INST]" |
|
input_ids = tokenizer(prompt, truncation=False, return_tensors="pt").input_ids[0].tolist() |
|
outputs = model.generate( |
|
sampling_params=generation_params, |
|
prompt_token_ids=[input_ids], |
|
) |
|
output = outputs[0] |
|
print(output.outputs[0].text) |
|
``` |