--- license: other language: - en pipeline_tag: text-generation inference: false tags: - transformers - gguf - imatrix - LongWriter-llama3.1-8b --- Quantizations of https://huggingface.co/THUDM/LongWriter-llama3.1-8b ### Inference Clients/UIs * [llama.cpp](https://github.com/ggerganov/llama.cpp) * [KoboldCPP](https://github.com/LostRuins/koboldcpp) * [text-generation-webui](https://github.com/oobabooga/text-generation-webui) * [ollama](https://github.com/ollama/ollama) --- # From original readme LongWriter-llama3.1-8b is trained based on [Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B), and is capable of generating 10,000+ words at once. Environment: `transformers>=4.43.0` Please ahere to the prompt template (system prompt is optional): `<>\n{system prompt}\n<>\n\n[INST]{query1}[/INST]{response1}[INST]{query2}[/INST]{response2}...` A simple demo for deployment of the model: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("THUDM/LongWriter-llama3.1-8b", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("THUDM/LongWriter-llama3.1-8b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto") model = model.eval() query = "Write a 10000-word China travel guide" prompt = f"[INST]{query}[/INST]" input = tokenizer(prompt, truncation=False, return_tensors="pt").to(device) context_length = input.input_ids.shape[-1] output = model.generate( **input, max_new_tokens=32768, num_beams=1, do_sample=True, temperature=0.5, )[0] response = tokenizer.decode(output[context_length:], skip_special_tokens=True) print(response) ``` You can also deploy the model with [vllm](https://github.com/vllm-project/vllm), which allows 10,000+ words generation within a minute. Here is an example code: ```python model = LLM( model= "THUDM/LongWriter-llama3.1-8b", dtype="auto", trust_remote_code=True, tensor_parallel_size=1, max_model_len=32768, gpu_memory_utilization=0.5, ) tokenizer = model.get_tokenizer() generation_params = SamplingParams( temperature=0.5, top_p=0.8, top_k=50, max_tokens=32768, repetition_penalty=1, ) query = "Write a 10000-word China travel guide" prompt = f"[INST]{query}[/INST]" input_ids = tokenizer(prompt, truncation=False, return_tensors="pt").input_ids[0].tolist() outputs = model.generate( sampling_params=generation_params, prompt_token_ids=[input_ids], ) output = outputs[0] print(output.outputs[0].text) ```