--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-14B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: gen-try-1 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: Qwen/Qwen2.5-14B-Instruct model_type: Qwen2ForCausalLM tokenizer_type: Qwen2Tokenizer trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: dwikitheduck/genesist-inst-rag-39K type: completion dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/lora-out sequence_len: 4096 sample_packing: false pad_to_sequence_len: adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: axolotl-soca wandb_entity: soca-ai wandb_watch: wandb_name: wandb_log_model: hub_model_id: dwikitheduck/gen-try-1 gradient_accumulation_steps: 8 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 10 evals_per_epoch: 2 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: save_safetensors: true ```

# gen-try-1 This model is a fine-tuned version of [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8327 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1832 | 0.0008 | 1 | 1.5919 | | 0.656 | 0.5003 | 620 | 0.8327 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.1+cu124 - Datasets 3.0.1 - Tokenizers 0.20.3