dwitidibyajyoti
commited on
Commit
•
949463b
1
Parent(s):
bb76f7d
dwitidibyajyoti/layoutmlv2_test_67
Browse files- README.md +78 -0
- config.json +58 -0
- pytorch_model.bin +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: microsoft/layoutlm-base-uncased
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: layoutlm-funsd
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# layoutlm-funsd
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.8927
|
18 |
+
- Column: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25}
|
19 |
+
- Ignore: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3}
|
20 |
+
- Key: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17}
|
21 |
+
- Value: {'precision': 0.6666666666666666, 'recall': 0.48484848484848486, 'f1': 0.5614035087719298, 'number': 33}
|
22 |
+
- Overall Precision: 0.6875
|
23 |
+
- Overall Recall: 0.4231
|
24 |
+
- Overall F1: 0.5238
|
25 |
+
- Overall Accuracy: 0.7947
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 3e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 8
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 15
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Column | Ignore | Key | Value | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
56 |
+
| 2.4627 | 1.0 | 2 | 2.1288 | {'precision': 0.23529411764705882, 'recall': 0.16, 'f1': 0.19047619047619052, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.06060606060606061, 'recall': 0.06060606060606061, 'f1': 0.06060606060606061, 'number': 33} | 0.0870 | 0.0769 | 0.0816 | 0.6887 |
|
57 |
+
| 2.1025 | 2.0 | 4 | 1.7650 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | 0.0 | 0.0 | 0.0 | 0.6921 |
|
58 |
+
| 1.7503 | 3.0 | 6 | 1.4611 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | 0.0 | 0.0 | 0.0 | 0.6904 |
|
59 |
+
| 1.4557 | 4.0 | 8 | 1.2624 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | 0.0 | 0.0 | 0.0 | 0.6904 |
|
60 |
+
| 1.3067 | 5.0 | 10 | 1.1889 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | 0.0 | 0.0 | 0.0 | 0.6904 |
|
61 |
+
| 1.1884 | 6.0 | 12 | 1.1436 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | 0.0 | 0.0 | 0.0 | 0.6904 |
|
62 |
+
| 1.1456 | 7.0 | 14 | 1.0901 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | 0.0 | 0.0 | 0.0 | 0.6904 |
|
63 |
+
| 1.0915 | 8.0 | 16 | 1.0410 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 0.11764705882352941, 'f1': 0.21052631578947367, 'number': 17} | {'precision': 0.3333333333333333, 'recall': 0.030303030303030304, 'f1': 0.05555555555555555, 'number': 33} | 0.6 | 0.0385 | 0.0723 | 0.6937 |
|
64 |
+
| 1.0428 | 9.0 | 18 | 0.9990 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 0.29411764705882354, 'f1': 0.45454545454545453, 'number': 17} | {'precision': 0.23529411764705882, 'recall': 0.12121212121212122, 'f1': 0.16, 'number': 33} | 0.2727 | 0.1154 | 0.1622 | 0.7252 |
|
65 |
+
| 0.9819 | 10.0 | 20 | 0.9639 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 0.4117647058823529, 'f1': 0.5833333333333334, 'number': 17} | {'precision': 0.2631578947368421, 'recall': 0.15151515151515152, 'f1': 0.19230769230769232, 'number': 33} | 0.3243 | 0.1538 | 0.2087 | 0.7517 |
|
66 |
+
| 0.9592 | 11.0 | 22 | 0.9344 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 0.6470588235294118, 'f1': 0.7857142857142858, 'number': 17} | {'precision': 0.3684210526315789, 'recall': 0.21212121212121213, 'f1': 0.2692307692307693, 'number': 33} | 0.4737 | 0.2308 | 0.3103 | 0.7781 |
|
67 |
+
| 0.9011 | 12.0 | 24 | 0.9105 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 0.64, 'recall': 0.48484848484848486, 'f1': 0.5517241379310344, 'number': 33} | 0.66 | 0.4231 | 0.5156 | 0.7930 |
|
68 |
+
| 0.9426 | 13.0 | 26 | 0.8927 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 0.6666666666666666, 'recall': 0.48484848484848486, 'f1': 0.5614035087719298, 'number': 33} | 0.6875 | 0.4231 | 0.5238 | 0.7947 |
|
69 |
+
| 0.8809 | 14.0 | 28 | 0.8821 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 0.6666666666666666, 'recall': 0.48484848484848486, 'f1': 0.5614035087719298, 'number': 33} | 0.6875 | 0.4231 | 0.5238 | 0.7947 |
|
70 |
+
| 0.9188 | 15.0 | 30 | 0.8774 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 17} | {'precision': 0.6666666666666666, 'recall': 0.48484848484848486, 'f1': 0.5614035087719298, 'number': 33} | 0.6875 | 0.4231 | 0.5238 | 0.7947 |
|
71 |
+
|
72 |
+
|
73 |
+
### Framework versions
|
74 |
+
|
75 |
+
- Transformers 4.32.1
|
76 |
+
- Pytorch 2.0.1+cu118
|
77 |
+
- Datasets 2.14.4
|
78 |
+
- Tokenizers 0.13.3
|
config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/layoutlm-base-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"LayoutLMForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"id2label": {
|
11 |
+
"0": "S-VALUE",
|
12 |
+
"1": "I-VALUE",
|
13 |
+
"2": "E-IGNORE",
|
14 |
+
"3": "S-KEY",
|
15 |
+
"4": "E-COLUMN",
|
16 |
+
"5": "B-IGNORE",
|
17 |
+
"6": "S-COLUMN",
|
18 |
+
"7": "I-COLUMN",
|
19 |
+
"8": "O",
|
20 |
+
"9": "E-VALUE",
|
21 |
+
"10": "B-COLUMN",
|
22 |
+
"11": "S-IGNORE",
|
23 |
+
"12": "I-IGNORE",
|
24 |
+
"13": "B-VALUE"
|
25 |
+
},
|
26 |
+
"initializer_range": 0.02,
|
27 |
+
"intermediate_size": 3072,
|
28 |
+
"label2id": {
|
29 |
+
"B-COLUMN": 10,
|
30 |
+
"B-IGNORE": 5,
|
31 |
+
"B-VALUE": 13,
|
32 |
+
"E-COLUMN": 4,
|
33 |
+
"E-IGNORE": 2,
|
34 |
+
"E-VALUE": 9,
|
35 |
+
"I-COLUMN": 7,
|
36 |
+
"I-IGNORE": 12,
|
37 |
+
"I-VALUE": 1,
|
38 |
+
"O": 8,
|
39 |
+
"S-COLUMN": 6,
|
40 |
+
"S-IGNORE": 11,
|
41 |
+
"S-KEY": 3,
|
42 |
+
"S-VALUE": 0
|
43 |
+
},
|
44 |
+
"layer_norm_eps": 1e-12,
|
45 |
+
"max_2d_position_embeddings": 1024,
|
46 |
+
"max_position_embeddings": 512,
|
47 |
+
"model_type": "layoutlm",
|
48 |
+
"num_attention_heads": 12,
|
49 |
+
"num_hidden_layers": 12,
|
50 |
+
"output_past": true,
|
51 |
+
"pad_token_id": 0,
|
52 |
+
"position_embedding_type": "absolute",
|
53 |
+
"torch_dtype": "float32",
|
54 |
+
"transformers_version": "4.32.1",
|
55 |
+
"type_vocab_size": 2,
|
56 |
+
"use_cache": true,
|
57 |
+
"vocab_size": 30522
|
58 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2352db3198e37db8a0fdb5b48c3298de173a728a360eb75bd091a690703b5ddc
|
3 |
+
size 450625473
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a5f8bbc581939b48341cf7d6d9d40338dad72bad41bd7c001758fbba35697a1
|
3 |
+
size 4027
|