--- license: apache-2.0 datasets: - mozilla-foundation/common_voice_13_0 language: - sw library_name: transformers tags: - language - swahili - asr - mozilla --- ## How To Use Here is a plug and play inference code ```python from transformers import WhisperProcessor, WhisperForConditionalGeneration processor = WhisperProcessor.from_pretrained("eddiegulay/Whisperer_Mozilla_Sw_2000") model = WhisperForConditionalGeneration.from_pretrained("eddiegulay/Whisperer_Mozilla_Sw_2000") forced_decoder_ids = processor.get_decoder_prompt_ids(language="swahili", task="transcribe") def transcribe(audio_path): # Load the audio file audio_input, sample_rate = torchaudio.load(audio_path) target_sample_rate = 16000 audio_input = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sample_rate)(audio_input) # Preprocess the audio data input_features = processor(audio_input[0], sampling_rate=target_sample_rate, return_tensors="pt").input_features # generate token ids predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) # Perform inference and transcribe transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) return transcription transcribe('your_audio_file.mp3') ```