--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: g-bert-NER results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: test args: conll2003 metrics: - name: Precision type: precision value: 0.8925347222222222 - name: Recall type: recall value: 0.9102337110481586 - name: F1 type: f1 value: 0.901297335203366 - name: Accuracy type: accuracy value: 0.9799720038763864 --- # g-bert-NER This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1387 - Precision: 0.8925 - Recall: 0.9102 - F1: 0.9013 - Accuracy: 0.9800 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1773 | 1.0 | 878 | 0.1028 | 0.8910 | 0.8947 | 0.8928 | 0.9781 | | 0.036 | 2.0 | 1756 | 0.1125 | 0.8901 | 0.9132 | 0.9015 | 0.9793 | | 0.0194 | 3.0 | 2634 | 0.1202 | 0.8948 | 0.9093 | 0.9020 | 0.9800 | | 0.0112 | 4.0 | 3512 | 0.1346 | 0.8889 | 0.9136 | 0.9011 | 0.9794 | | 0.0081 | 5.0 | 4390 | 0.1387 | 0.8925 | 0.9102 | 0.9013 | 0.9800 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1