edumunozsala
commited on
Commit
•
da31a02
1
Parent(s):
6b58971
Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,195 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
## Evaluation
|
|
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
|
167 |
-
|
168 |
|
169 |
-
|
|
|
|
|
170 |
|
171 |
-
|
172 |
|
173 |
-
|
|
|
174 |
|
175 |
-
**BibTeX:**
|
176 |
|
177 |
-
|
|
|
178 |
|
179 |
-
|
|
|
180 |
|
181 |
-
|
|
|
182 |
|
183 |
-
|
|
|
184 |
|
185 |
-
|
|
|
186 |
|
187 |
-
|
188 |
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
-
[More Information Needed]
|
192 |
|
193 |
-
|
194 |
|
195 |
-
|
196 |
|
197 |
-
|
198 |
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
datasets:
|
5 |
+
- iamtarun/python_code_instructions_18k_alpaca
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
metrics:
|
9 |
+
- rouge
|
10 |
+
pipeline_tag: text-generation
|
11 |
---
|
12 |
|
13 |
+
# Phi-3-mini 3.8B QLoRA Python Coder 👩💻
|
14 |
+
|
15 |
+
**Phi-3-mini 3.8B** fine-tuned on the **python_code_instructions_18k_alpaca Code instructions dataset** by using the method **QLoRA** with [PEFT](https://github.com/huggingface/peft) library.
|
16 |
+
|
17 |
+
## Pretrained description
|
18 |
+
|
19 |
+
[Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)
|
20 |
+
|
21 |
+
The Phi-3-Mini-4K-Instruct is a 3.8B parameters, lightweight, state-of-the-art open model trained with the Phi-3 datasets that includes both synthetic data and the filtered publicly available websites data with a focus on high-quality and reasoning dense properties. The model belongs to the Phi-3 family with the Mini version in two variants 4K and 128K which is the context length (in tokens) that it can support.
|
22 |
+
|
23 |
+
## Tokenizer
|
24 |
+
Phi-3 Mini-4K-Instruct supports a vocabulary size of up to 32064 tokens. The tokenizer files already provide placeholder tokens that can be used for downstream fine-tuning, but they can also be extended up to the model's vocabulary size.
|
25 |
+
|
26 |
+
## Training data
|
27 |
+
|
28 |
+
[python_code_instructions_18k_alpaca](https://huggingface.co/datasets/iamtarun/python_code_instructions_18k_alpaca)
|
29 |
+
|
30 |
+
The dataset contains problem descriptions and code in python language. This dataset is taken from sahil2801/code_instructions_120k, which adds a prompt column in alpaca style.
|
31 |
+
|
32 |
+
### Chat Format
|
33 |
+
Given the nature of the training data, the Phi-3 Mini-4K-Instruct model is best suited for prompts using the chat format as follows. You can provide the prompt as a question with a generic template as follow:
|
34 |
+
|
35 |
+
```
|
36 |
+
<|user|>\nQuestion <|end|>\n<|assistant|>
|
37 |
+
```
|
38 |
+
|
39 |
+
For example:
|
40 |
+
|
41 |
+
```
|
42 |
+
<|user|>
|
43 |
+
How to explain Internet for a medieval knight?<|end|>
|
44 |
+
<|assistant|>
|
45 |
+
```
|
46 |
+
|
47 |
+
where the model generates the text after <|assistant|> . In case of few-shots prompt, the prompt can be formatted as the following:
|
48 |
+
```
|
49 |
+
<|user|>
|
50 |
+
I am going to Paris, what should I see?<|end|>
|
51 |
+
<|assistant|>
|
52 |
+
Paris, the capital of France, is known for its stunning architecture, art museums, historical landmarks, and romantic atmosphere. Here are some of the top attractions to see in Paris:\n\n1. The Eiffel Tower: The iconic Eiffel Tower is one of the most recognizable landmarks in the world and offers breathtaking views of the city.\n2. The Louvre Museum: The Louvre is one of the world's largest and most famous museums, housing an impressive collection of art and artifacts, including the Mona Lisa.\n3. Notre-Dame Cathedral: This beautiful cathedral is one of the most famous landmarks in Paris and is known for its Gothic architecture and stunning stained glass windows.\n\nThese are just a few of the many attractions that Paris has to offer. With so much to see and do, it's no wonder that Paris is one of the most popular tourist destinations in the world."<|end|>
|
53 |
+
<|user|>
|
54 |
+
What is so great about #1?<|end|>
|
55 |
+
<|assistant|>
|
56 |
+
```
|
57 |
+
|
58 |
+
### Training hyperparameters
|
59 |
+
|
60 |
+
The following `bitsandbytes` and `PEFT` config was used during training:
|
61 |
+
```py
|
62 |
+
################################################################################
|
63 |
+
# bitsandbytes parameters
|
64 |
+
################################################################################
|
65 |
+
# Activate 4-bit precision base model loading
|
66 |
+
use_4bit = True
|
67 |
+
# Compute dtype for 4-bit base models
|
68 |
+
bnb_4bit_compute_dtype = "bfloat16"
|
69 |
+
# Quantization type (fp4 or nf4)
|
70 |
+
bnb_4bit_quant_type = "nf4"
|
71 |
+
# Activate nested quantization for 4-bit base models (double quantization)
|
72 |
+
use_double_quant = True
|
73 |
+
|
74 |
+
|
75 |
+
################################################################################
|
76 |
+
# LoRA parameters
|
77 |
+
################################################################################
|
78 |
+
# LoRA attention dimension
|
79 |
+
lora_r = 16
|
80 |
+
# Alpha parameter for LoRA scaling
|
81 |
+
lora_alpha = 16
|
82 |
+
# Dropout probability for LoRA layers
|
83 |
+
lora_dropout = 0.05
|
84 |
+
# Modules
|
85 |
+
target_modules= ['k_proj', 'q_proj', 'v_proj', 'o_proj', "gate_proj", "down_proj", "up_proj"]
|
86 |
+
```
|
87 |
+
|
88 |
+
**SFTTrainer arguments**
|
89 |
+
```py
|
90 |
+
evaluation_strategy="steps",
|
91 |
+
do_eval=True,
|
92 |
+
optim="paged_adamw_8bit",
|
93 |
+
per_device_train_batch_size=4,
|
94 |
+
gradient_accumulation_steps=8,
|
95 |
+
per_device_eval_batch_size=4,
|
96 |
+
log_level="debug",
|
97 |
+
save_strategy="epoch",
|
98 |
+
logging_steps=100,
|
99 |
+
learning_rate=1e-4,
|
100 |
+
fp16 = not torch.cuda.is_bf16_supported(),
|
101 |
+
bf16 = torch.cuda.is_bf16_supported(),
|
102 |
+
eval_steps=100,
|
103 |
+
num_train_epochs=3,
|
104 |
+
warmup_ratio=0.1,
|
105 |
+
lr_scheduler_type="linear",
|
106 |
+
report_to="wandb",
|
107 |
+
```
|
108 |
+
|
109 |
+
### Framework versions
|
110 |
+
- PEFT 0.4.0
|
111 |
+
|
112 |
+
## Training
|
113 |
+
|
114 |
+
```text
|
115 |
+
Step Training Loss Validation Loss
|
116 |
+
100 1.142200 0.662472
|
117 |
+
200 0.623800 0.600241
|
118 |
+
300 0.593200 0.590614
|
119 |
+
400 0.592600 0.585953
|
120 |
+
500 0.579400 0.583388
|
121 |
+
600 0.586800 0.581465
|
122 |
+
700 0.571100 0.579619
|
123 |
+
800 0.572900 0.578471
|
124 |
+
900 0.585800 0.577197
|
125 |
+
1000 0.573200 0.576328
|
126 |
+
1100 0.573600 0.575592
|
127 |
+
1200 0.563800 0.575420
|
128 |
+
1300 0.576900 0.574614
|
129 |
+
1400 0.566800 0.574540
|
130 |
+
1500 0.567500 0.574162
|
131 |
+
1600 0.569300 0.574146
|
132 |
+
```
|
133 |
|
134 |
## Evaluation
|
135 |
+
Evaluating on a test dataset of 500 samples:
|
136 |
|
137 |
+
```text
|
138 |
+
Rouge 1 Mean: 56.65322508234244
|
139 |
+
Rouge 2 Mean: 37.547274096577084
|
140 |
+
Rouge L Mean: 51.08407579855678
|
141 |
+
Rouge Lsum Mean: 56.256016384803075
|
142 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
+
### Example of usage
|
145 |
|
146 |
+
```py
|
147 |
+
import torch
|
148 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
149 |
|
150 |
+
model_id = "edumunozsala/phi3-mini-python-code-20k"
|
151 |
|
152 |
+
tokenizer = AutoTokenizer.from_pretrained(hf_model_repo,trust_remote_code=True)
|
153 |
+
model = AutoModelForCausalLM.from_pretrained(hf_model_repo, trust_remote_code=True, torch_dtype="auto", device_map="cuda")
|
154 |
|
|
|
155 |
|
156 |
+
instruction="Create an algorithm in Python to sort an array of numbers."
|
157 |
+
input="[9, 3, 5, 1, 6]"
|
158 |
|
159 |
+
prompt = f"""### Instruction:
|
160 |
+
Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
161 |
|
162 |
+
### Instruction:
|
163 |
+
{instruction}
|
164 |
|
165 |
+
### Input:
|
166 |
+
{input}
|
167 |
|
168 |
+
### Output:
|
169 |
+
"""
|
170 |
|
171 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
172 |
|
173 |
+
# Function to execute inference on a prompt
|
174 |
+
def test_inference(prompt):
|
175 |
+
prompt = pipe.tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True)
|
176 |
+
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, num_beams=1, temperature=0.3, top_k=50, top_p=0.95,
|
177 |
+
max_time= 180) #, eos_token_id=eos_token)
|
178 |
+
return outputs[0]['generated_text'][len(prompt):].strip()
|
179 |
|
|
|
180 |
|
181 |
+
test_inference(prompt)
|
182 |
|
183 |
+
```
|
184 |
|
185 |
+
### Citation
|
186 |
|
187 |
+
```
|
188 |
+
@misc {edumunozsala_2023,
|
189 |
+
author = { {Eduardo Muñoz} },
|
190 |
+
title = { phi3-mini-4k-qlora-python-code-20k },
|
191 |
+
year = 2024,
|
192 |
+
url = { https://huggingface.co/edumunozsala/phi3-mini-4k-qlora-python-code-20k },
|
193 |
+
publisher = { Hugging Face }
|
194 |
+
}
|
195 |
+
```
|