--- library_name: transformers license: apache-2.0 datasets: - abideen/Cosmopedia-100k-pretrain language: - en base_model: - meta-llama/Llama-3.1-8B-Instruct --- # ๐Ÿš€ Llama3-8B-to2B-BitnetDownscaling (from 8B to 2B) Transformation & Training This project transforms a Llama3 model from 8B parameters to a BitNet architecture with 2B parameters, applying BitLinear layers. Additionally, the model is trained with a predefined dataset and uploaded to Hugging Face for future use. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6419c2f6b4adb0e101b17b6c/X6O_WbSqbdOWjhTm0tWU1.png) ## Features ๐ŸŒˆ - **Model Size:** 8B parameters ๐Ÿง  - **Architecture:** BitNet ๐Ÿ—๏ธ - **Bitlinear Layers:** Reduces weights to values of 1, 0, and -1. โž– - **Optimized for:** Fast inference and memory efficiency โšก ## Architecture ```bash LlamaForCausalLM( (model): LlamaModel( (embed_tokens): Embedding(128256, 4096) (layers): ModuleList( (0-5): 6 x LlamaDecoderLayer( (self_attn): LlamaSdpaAttention( (q_proj): BitLinear(in_features=4096, out_features=4096, bias=False) (k_proj): BitLinear(in_features=4096, out_features=1024, bias=False) (v_proj): BitLinear(in_features=4096, out_features=1024, bias=False) (o_proj): BitLinear(in_features=4096, out_features=4096, bias=False) (rotary_emb): LlamaRotaryEmbedding() ) (mlp): LlamaMLP( (gate_proj): BitLinear(in_features=4096, out_features=14336, bias=False) (up_proj): BitLinear(in_features=4096, out_features=14336, bias=False) (down_proj): BitLinear(in_features=14336, out_features=4096, bias=False) (act_fn): SiLU() ) (input_layernorm): Identity() (post_attention_layernorm): LlamaRMSNorm((4096,), eps=1e-05) ) ) (norm): LlamaRMSNorm((4096,), eps=1e-05) (rotary_emb): LlamaRotaryEmbedding() ) (lm_head): Linear(in_features=4096, out_features=128256, bias=False) ) ``` --- ### Model Description This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** ejbejaranos@gmail.com && lidia.andres@itcl.es - **Funded by [optional]:** ITCL - **Model type:** LLama3 8B Tramsformed to Bitnet using Downscaling technique - **Language(s) (NLP):** Bitnet - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ## Requirements ๐Ÿ“ฆ Make sure you have the following libraries installed: ```bash pip install transformers torch huggingface_hub wandb coloredlogs ``` You can install these dependencies using pip! ๐ŸŽ‰ ## Usage ๐Ÿ” ### Loading the Model To load the model, you can simply run the following code: Para usar este modelo, puedes cargarlo desde Hugging Face con el siguiente cรณdigo: ```python from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.models.llama.modeling_llama import * import torch from torch import nn import torch.nn.functional as F import coloredlogs import logging coloredlogs.install(level='INFO', fmt='%(asctime)s - %(levelname)s - %(message)s', logger=logging.getLogger()) logger = logging.getLogger(__name__) HF_TOKEN = "you_api_key_here" model = "ejbejaranos/Llama3-8B-ITCL-Bitnet1.6B" # Load a pretrained BitNet model tokenizer = AutoTokenizer.from_pretrained(model) model = AutoModelForCausalLM.from_pretrained( model, token=HF_TOKEN ) # Establece el pad_token_id model.config.pad_token_id = tokenizer.eos_token_id def count_parameters(model): # Calculate the number of parameters in billions num_params = sum(p.numel() for p in model.parameters() if p.requires_grad) / 10**9 print(f"Model size: {num_params:.3f}B parameters") return int(num_params) def activation_quant(x): scale = 127.0 / x.abs().max(dim=-1, keepdim=True).values.clamp_(min=1e-5) y = (x * scale).round().clamp_(-128, 127) y = y / scale return y def weight_quant(w): scale = 1.0 / w.abs().mean().clamp_(min=1e-5) u = (w * scale).round().clamp_(-1, 1) u = u / scale return u class BitLinear(nn.Linear): def forward(self, x): w = self.weight # a weight tensor with shape [d, k] x = x.to(w.device) RMSNorm = LlamaRMSNorm(x.shape[-1]).to(w.device) x_norm = RMSNorm(x) x_quant = x_norm + (activation_quant(x_norm) - x_norm).detach() w_quant = w + (weight_quant(w) - w).detach() y = F.linear(x_quant, w_quant) return y def convert_to_bitnet(model, copy_weights): for name, module in model.named_modules(): if isinstance(module, LlamaSdpaAttention) or isinstance(module, LlamaMLP): for child_name, child_module in module.named_children(): if isinstance(child_module, nn.Linear): bitlinear = BitLinear(child_module.in_features, child_module.out_features, child_module.bias is not None).to(device="cuda:0") if copy_weights: bitlinear.weight = child_module.weight if child_module.bias is not None: bitlinear.bias = child_module.bias setattr(module, child_name, bitlinear) elif isinstance(module, LlamaDecoderLayer): for child_name, child_module in module.named_children(): if isinstance(child_module, LlamaRMSNorm) and child_name == "input_layernorm": setattr(module, child_name, nn.Identity().to(device="cuda:0")) convert_to_bitnet(model, copy_weights=True) model.to(device="cuda:0") logger.info(f"๐Ÿ”ข Number of parameters in the model after extracting weights: {count_parameters(model)}") logger.info(f"๐Ÿ“ Reduced model structure:\n{model}") prompt = "What is the color of sky?" inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(model.device) inputs['attention_mask'] = inputs['input_ids'] != model.config.pad_token_id generate_ids = model.generate(inputs.input_ids, attention_mask=inputs['attention_mask'], max_length=250) decoded_output = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output[0]) # Print the generated response ``` ### Performing Inference Generate text using the model to unleash its power! ๐Ÿ’ฌโœจ ```text - What role does explainability play in your AI solutions? How can you ensure that your AI system is able to accurately predict and respond to user inputs? These are some of the questions that AI developers have been asking themselves in the last few years. In this section, we will explore some of the key concepts and techniques that AI developers have used to develop in their AI systems. First, let's consider the importance of understanding the role of AI in AI. AI systems can be incredibly powerful tools for automating tasks, analyzing data, and identifying patterns. They can analyze large datasets and identify patterns, trends, and anomalies that might be missed by human analysts. By analyzing large datasets, AI can help identify patterns and trends that might otherwise go unnoticed. One of the most significant challenges in AI development is the lack of transparency and accountability. With AI systems becoming increasingly sophisticated, there is a growing need for transparency and accountability in AI development. This means that there is a growing need for transparency and accountability in AI development. However, as AI becomes more sophisticated, it can also lead to unintended consequences, such as job loss or reputational damage. ``` ## Contact ๐Ÿ“ซ For questions or suggestions, feel free to reach out to me: - **Email:** ejbejaranos@gmail.com - **GitHub:** [ejbejaranos](https://github.com/ejbejaranos) ๐ŸŒ