eliascc5 commited on
Commit
90672ba
1 Parent(s): 38f347b

layoutlmv3-finetuned-FUNSD

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ base_model: microsoft/layoutlmv3-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: layoutlmv3-finetuned-FUNSD
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # layoutlmv3-finetuned-FUNSD
20
+
21
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.6088
24
+ - Precision: 0.9024
25
+ - Recall: 0.9190
26
+ - F1: 0.9107
27
+ - Accuracy: 0.8544
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 1e-05
47
+ - train_batch_size: 2
48
+ - eval_batch_size: 2
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - training_steps: 1000
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 1.33 | 100 | 0.6659 | 0.7835 | 0.8217 | 0.8021 | 0.7825 |
59
+ | No log | 2.67 | 200 | 0.5631 | 0.8229 | 0.8912 | 0.8557 | 0.7903 |
60
+ | No log | 4.0 | 300 | 0.4653 | 0.8470 | 0.8992 | 0.8723 | 0.8389 |
61
+ | No log | 5.33 | 400 | 0.5080 | 0.8526 | 0.9081 | 0.8795 | 0.8324 |
62
+ | 0.5612 | 6.67 | 500 | 0.5200 | 0.8733 | 0.9036 | 0.8882 | 0.8429 |
63
+ | 0.5612 | 8.0 | 600 | 0.5480 | 0.8878 | 0.9160 | 0.9017 | 0.8531 |
64
+ | 0.5612 | 9.33 | 700 | 0.5655 | 0.8894 | 0.9146 | 0.9018 | 0.8521 |
65
+ | 0.5612 | 10.67 | 800 | 0.5971 | 0.8943 | 0.9160 | 0.9050 | 0.8514 |
66
+ | 0.5612 | 12.0 | 900 | 0.5873 | 0.9022 | 0.9215 | 0.9118 | 0.8583 |
67
+ | 0.1425 | 13.33 | 1000 | 0.6088 | 0.9024 | 0.9190 | 0.9107 | 0.8544 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.35.2
73
+ - Pytorch 2.1.0+cu121
74
+ - Datasets 2.16.1
75
+ - Tokenizers 0.15.1