layoutlmv3-finetuned-FUNSD
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
base_model: microsoft/layoutlmv3-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: layoutlmv3-finetuned-FUNSD
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# layoutlmv3-finetuned-FUNSD
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.6088
|
24 |
+
- Precision: 0.9024
|
25 |
+
- Recall: 0.9190
|
26 |
+
- F1: 0.9107
|
27 |
+
- Accuracy: 0.8544
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 1e-05
|
47 |
+
- train_batch_size: 2
|
48 |
+
- eval_batch_size: 2
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- training_steps: 1000
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 1.33 | 100 | 0.6659 | 0.7835 | 0.8217 | 0.8021 | 0.7825 |
|
59 |
+
| No log | 2.67 | 200 | 0.5631 | 0.8229 | 0.8912 | 0.8557 | 0.7903 |
|
60 |
+
| No log | 4.0 | 300 | 0.4653 | 0.8470 | 0.8992 | 0.8723 | 0.8389 |
|
61 |
+
| No log | 5.33 | 400 | 0.5080 | 0.8526 | 0.9081 | 0.8795 | 0.8324 |
|
62 |
+
| 0.5612 | 6.67 | 500 | 0.5200 | 0.8733 | 0.9036 | 0.8882 | 0.8429 |
|
63 |
+
| 0.5612 | 8.0 | 600 | 0.5480 | 0.8878 | 0.9160 | 0.9017 | 0.8531 |
|
64 |
+
| 0.5612 | 9.33 | 700 | 0.5655 | 0.8894 | 0.9146 | 0.9018 | 0.8521 |
|
65 |
+
| 0.5612 | 10.67 | 800 | 0.5971 | 0.8943 | 0.9160 | 0.9050 | 0.8514 |
|
66 |
+
| 0.5612 | 12.0 | 900 | 0.5873 | 0.9022 | 0.9215 | 0.9118 | 0.8583 |
|
67 |
+
| 0.1425 | 13.33 | 1000 | 0.6088 | 0.9024 | 0.9190 | 0.9107 | 0.8544 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.35.2
|
73 |
+
- Pytorch 2.1.0+cu121
|
74 |
+
- Datasets 2.16.1
|
75 |
+
- Tokenizers 0.15.1
|