emilstabil commited on
Commit
d4840df
1 Parent(s): 7059ed9

End of training

Browse files
Files changed (1) hide show
  1. README.md +29 -11
README.md CHANGED
@@ -6,23 +6,23 @@ tags:
6
  metrics:
7
  - rouge
8
  model-index:
9
- - name: DanSumT5-large-finetuned-test_57626
10
  results: []
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
  should probably proofread and complete it, then remove this comment. -->
15
 
16
- # DanSumT5-large-finetuned-test_57626
17
 
18
  This model is a fine-tuned version of [Danish-summarisation/DanSumT5-large](https://huggingface.co/Danish-summarisation/DanSumT5-large) on the None dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 2.5370
21
- - Rouge1: 31.992
22
- - Rouge2: 7.6605
23
- - Rougel: 18.1676
24
- - Rougelsum: 29.1825
25
- - Gen Len: 126.27
26
 
27
  ## Model description
28
 
@@ -49,14 +49,32 @@ The following hyperparameters were used during training:
49
  - total_train_batch_size: 4
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
- - num_epochs: 2
53
 
54
  ### Training results
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
57
  |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
58
- | No log | 1.0 | 200 | 2.5665 | 31.8442 | 7.5263 | 18.0111 | 29.1725 | 126.86 |
59
- | No log | 2.0 | 400 | 2.5370 | 31.992 | 7.6605 | 18.1676 | 29.1825 | 126.27 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
 
62
  ### Framework versions
 
6
  metrics:
7
  - rouge
8
  model-index:
9
+ - name: DanSumT5-largeV_84227
10
  results: []
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
  should probably proofread and complete it, then remove this comment. -->
15
 
16
+ # DanSumT5-largeV_84227
17
 
18
  This model is a fine-tuned version of [Danish-summarisation/DanSumT5-large](https://huggingface.co/Danish-summarisation/DanSumT5-large) on the None dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 2.2976
21
+ - Rouge1: 32.3488
22
+ - Rouge2: 8.638
23
+ - Rougel: 18.8215
24
+ - Rougelsum: 29.8654
25
+ - Gen Len: 126.28
26
 
27
  ## Model description
28
 
 
49
  - total_train_batch_size: 4
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
+ - num_epochs: 20
53
 
54
  ### Training results
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
57
  |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
58
+ | No log | 1.0 | 200 | 2.5620 | 31.6386 | 7.3603 | 17.9932 | 28.8935 | 126.32 |
59
+ | No log | 2.0 | 400 | 2.4824 | 31.8478 | 8.0477 | 18.5952 | 29.2582 | 126.77 |
60
+ | 2.7655 | 3.0 | 600 | 2.4305 | 32.1965 | 8.4935 | 18.7317 | 29.9719 | 125.03 |
61
+ | 2.7655 | 4.0 | 800 | 2.3945 | 31.8539 | 8.7262 | 18.5421 | 29.8472 | 125.63 |
62
+ | 2.4368 | 5.0 | 1000 | 2.3685 | 32.0137 | 8.2933 | 18.7818 | 29.561 | 125.32 |
63
+ | 2.4368 | 6.0 | 1200 | 2.3522 | 31.5 | 8.3477 | 18.9478 | 29.3072 | 125.11 |
64
+ | 2.4368 | 7.0 | 1400 | 2.3364 | 31.6482 | 8.3012 | 18.9953 | 29.0985 | 123.38 |
65
+ | 2.2645 | 8.0 | 1600 | 2.3250 | 31.9939 | 8.5944 | 18.9914 | 29.5092 | 125.18 |
66
+ | 2.2645 | 9.0 | 1800 | 2.3212 | 31.5611 | 8.1969 | 18.7941 | 29.151 | 126.01 |
67
+ | 2.134 | 10.0 | 2000 | 2.3117 | 32.0902 | 8.6962 | 19.0793 | 29.758 | 125.4 |
68
+ | 2.134 | 11.0 | 2200 | 2.3064 | 31.9365 | 8.7161 | 18.9113 | 29.6812 | 125.86 |
69
+ | 2.134 | 12.0 | 2400 | 2.3062 | 32.3185 | 9.0913 | 19.2692 | 29.9962 | 126.24 |
70
+ | 2.0467 | 13.0 | 2600 | 2.3032 | 31.7591 | 8.4993 | 18.8326 | 29.4231 | 125.02 |
71
+ | 2.0467 | 14.0 | 2800 | 2.3008 | 32.0532 | 8.8654 | 18.897 | 29.5819 | 126.2 |
72
+ | 1.9931 | 15.0 | 3000 | 2.2980 | 31.8987 | 8.7669 | 19.0859 | 29.3799 | 126.0 |
73
+ | 1.9931 | 16.0 | 3200 | 2.2982 | 32.2458 | 8.7896 | 18.6845 | 29.6991 | 126.0 |
74
+ | 1.9931 | 17.0 | 3400 | 2.2987 | 32.0869 | 8.6678 | 18.7656 | 29.8441 | 125.66 |
75
+ | 1.949 | 18.0 | 3600 | 2.2974 | 32.1759 | 8.6004 | 18.7892 | 29.6918 | 126.31 |
76
+ | 1.949 | 19.0 | 3800 | 2.2970 | 32.1139 | 8.5827 | 18.7099 | 29.5327 | 126.15 |
77
+ | 1.9257 | 20.0 | 4000 | 2.2976 | 32.3488 | 8.638 | 18.8215 | 29.8654 | 126.28 |
78
 
79
 
80
  ### Framework versions