emilstabil
commited on
Commit
•
d4840df
1
Parent(s):
7059ed9
End of training
Browse files
README.md
CHANGED
@@ -6,23 +6,23 @@ tags:
|
|
6 |
metrics:
|
7 |
- rouge
|
8 |
model-index:
|
9 |
-
- name: DanSumT5-
|
10 |
results: []
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
should probably proofread and complete it, then remove this comment. -->
|
15 |
|
16 |
-
# DanSumT5-
|
17 |
|
18 |
This model is a fine-tuned version of [Danish-summarisation/DanSumT5-large](https://huggingface.co/Danish-summarisation/DanSumT5-large) on the None dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 2.
|
21 |
-
- Rouge1:
|
22 |
-
- Rouge2:
|
23 |
-
- Rougel: 18.
|
24 |
-
- Rougelsum: 29.
|
25 |
-
- Gen Len: 126.
|
26 |
|
27 |
## Model description
|
28 |
|
@@ -49,14 +49,32 @@ The following hyperparameters were used during training:
|
|
49 |
- total_train_batch_size: 4
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
-
- num_epochs:
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
|
58 |
-
| No log | 1.0 | 200 | 2.
|
59 |
-
| No log | 2.0 | 400 | 2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
|
62 |
### Framework versions
|
|
|
6 |
metrics:
|
7 |
- rouge
|
8 |
model-index:
|
9 |
+
- name: DanSumT5-largeV_84227
|
10 |
results: []
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
should probably proofread and complete it, then remove this comment. -->
|
15 |
|
16 |
+
# DanSumT5-largeV_84227
|
17 |
|
18 |
This model is a fine-tuned version of [Danish-summarisation/DanSumT5-large](https://huggingface.co/Danish-summarisation/DanSumT5-large) on the None dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 2.2976
|
21 |
+
- Rouge1: 32.3488
|
22 |
+
- Rouge2: 8.638
|
23 |
+
- Rougel: 18.8215
|
24 |
+
- Rougelsum: 29.8654
|
25 |
+
- Gen Len: 126.28
|
26 |
|
27 |
## Model description
|
28 |
|
|
|
49 |
- total_train_batch_size: 4
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 20
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
|
58 |
+
| No log | 1.0 | 200 | 2.5620 | 31.6386 | 7.3603 | 17.9932 | 28.8935 | 126.32 |
|
59 |
+
| No log | 2.0 | 400 | 2.4824 | 31.8478 | 8.0477 | 18.5952 | 29.2582 | 126.77 |
|
60 |
+
| 2.7655 | 3.0 | 600 | 2.4305 | 32.1965 | 8.4935 | 18.7317 | 29.9719 | 125.03 |
|
61 |
+
| 2.7655 | 4.0 | 800 | 2.3945 | 31.8539 | 8.7262 | 18.5421 | 29.8472 | 125.63 |
|
62 |
+
| 2.4368 | 5.0 | 1000 | 2.3685 | 32.0137 | 8.2933 | 18.7818 | 29.561 | 125.32 |
|
63 |
+
| 2.4368 | 6.0 | 1200 | 2.3522 | 31.5 | 8.3477 | 18.9478 | 29.3072 | 125.11 |
|
64 |
+
| 2.4368 | 7.0 | 1400 | 2.3364 | 31.6482 | 8.3012 | 18.9953 | 29.0985 | 123.38 |
|
65 |
+
| 2.2645 | 8.0 | 1600 | 2.3250 | 31.9939 | 8.5944 | 18.9914 | 29.5092 | 125.18 |
|
66 |
+
| 2.2645 | 9.0 | 1800 | 2.3212 | 31.5611 | 8.1969 | 18.7941 | 29.151 | 126.01 |
|
67 |
+
| 2.134 | 10.0 | 2000 | 2.3117 | 32.0902 | 8.6962 | 19.0793 | 29.758 | 125.4 |
|
68 |
+
| 2.134 | 11.0 | 2200 | 2.3064 | 31.9365 | 8.7161 | 18.9113 | 29.6812 | 125.86 |
|
69 |
+
| 2.134 | 12.0 | 2400 | 2.3062 | 32.3185 | 9.0913 | 19.2692 | 29.9962 | 126.24 |
|
70 |
+
| 2.0467 | 13.0 | 2600 | 2.3032 | 31.7591 | 8.4993 | 18.8326 | 29.4231 | 125.02 |
|
71 |
+
| 2.0467 | 14.0 | 2800 | 2.3008 | 32.0532 | 8.8654 | 18.897 | 29.5819 | 126.2 |
|
72 |
+
| 1.9931 | 15.0 | 3000 | 2.2980 | 31.8987 | 8.7669 | 19.0859 | 29.3799 | 126.0 |
|
73 |
+
| 1.9931 | 16.0 | 3200 | 2.2982 | 32.2458 | 8.7896 | 18.6845 | 29.6991 | 126.0 |
|
74 |
+
| 1.9931 | 17.0 | 3400 | 2.2987 | 32.0869 | 8.6678 | 18.7656 | 29.8441 | 125.66 |
|
75 |
+
| 1.949 | 18.0 | 3600 | 2.2974 | 32.1759 | 8.6004 | 18.7892 | 29.6918 | 126.31 |
|
76 |
+
| 1.949 | 19.0 | 3800 | 2.2970 | 32.1139 | 8.5827 | 18.7099 | 29.5327 | 126.15 |
|
77 |
+
| 1.9257 | 20.0 | 4000 | 2.2976 | 32.3488 | 8.638 | 18.8215 | 29.8654 | 126.28 |
|
78 |
|
79 |
|
80 |
### Framework versions
|