File size: 3,750 Bytes
bde3304 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
license: apache-2.0
base_model: meta-llama/Meta-Llama-3.1-70B-Instruct
tags:
- function
- function-calling
- tool-using
---
## Empower Functions Model v1.1
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6424a49f12ba34f9894ab9b7/wXkYX_NXEFtpmBsQd6nIV.png)
[https://github.com/empower-ai/empower-functions](https://github.com/empower-ai/empower-functions)
Empower Functions is a family of LLMs(large language models) that offer GPT-4 level capabilities for real-world "tool using" use cases, with full compatibility support to serve as a drop-in replacement.
## Key Features
* Automatic tool using, able to decide when to use tools and when to converse, optimized for long conversations
* Parallel call, supports calling one function multiple times, multiple functions, or a combination of both
* Sequential calling, supports calling multiple functions sequentially to fulfill the user request
* Streaming
## Family of Models
| Model | Specs | Links | Notes |
| ------------------------------ | ------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------- |
| llama3-empower-functions-small | 128k context, based on [Llama3.1 8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) | [model](https://huggingface.co/empower-dev/llama3-empower-functions-small-v1.1), [gguf](https://huggingface.co/empower-dev/llama3-empower-functions-small-gguf-v1.1) | Most cost-effective, locally runnable | | Balance in accuracy and cost |
| llama3-empower-functions-large | 128k context, based on [Llama3.1 70B](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B) | [model](https://huggingface.co/empower-dev/llama3-empower-functions-large-v1.1) | Best accuracy |
### Hardware Requirement
We have tested and the family of models in following setup:
- empower-functions-small: fp16 on 1xA100 40G, GGUF and 4bit GGUF on Macbook M2 Pro with 32G RAM, in minimal the 4bit GGUF version requires 7.56G RAM.
- empower-functions-medium: fp16 on 2xA100 80G
- empower-functions-large: fp16 on 4xA100 80G
## Usage
There are three ways to use the empower-functions model. You can either directly [prompt the raw model](https://github.com/empower-ai/empower-functions?tab=readme-ov-file#prompt-raw-model), run it [locally](https://github.com/empower-ai/empower-functions?tab=readme-ov-file#running-locally) through llama-cpp-python, or use our [hosted API](https://github.com/empower-ai/empower-functions?tab=readme-ov-file#using-empower-api)
## Evaluation
v1.1 is the newer version trained based on meta llama3.1 with the newly updated dataset, it has achieved state-of-the-art performance on the Berkeley Function Calling leaderboard:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6570b927f56f953867847255/HrzbI0vmyvYhabS-I5hGj.png)
(captured on Sep 10, 2024)
## Demo App
Check our healthcare appointment booking [demo](https://app.empower.dev/chat-demo)
Want to customize the model? Please contact us at [founders@empower.dev](mailto:founders@empower.dev) |