--- license: apache-2.0 language: sah tags: - generated_from_trainer - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-53-sah-CV8 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice sah type: common_voice args: sah metrics: - name: Test WER type: wer value: 56.06 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: sah metrics: - name: Test WER type: wer value: 43.75 --- # wav2vec2-large-xlsr-53-sah-CV8 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.5089 - Wer: 0.5606 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.6849 | 16.67 | 500 | 1.1135 | 0.9344 | | 0.8223 | 33.33 | 1000 | 0.5148 | 0.5686 | | 0.5477 | 50.0 | 1500 | 0.5089 | 0.5606 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3