tommymarto commited on
Commit
acb77f2
1 Parent(s): 11d48d4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -170
README.md CHANGED
@@ -1,201 +1,97 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
9
 
 
10
 
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
 
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
102
 
103
- ## Evaluation
 
 
 
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
 
106
 
107
- ### Testing Data, Factors & Metrics
 
 
108
 
109
- #### Testing Data
 
 
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
 
 
 
 
 
 
112
 
113
- [More Information Needed]
 
 
 
114
 
115
- #### Factors
 
 
 
 
 
 
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
118
 
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
 
 
 
 
 
 
 
 
 
 
201
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ language:
5
+ - de
6
  ---
7
 
8
+ # MCQStudentBert Model Card
9
 
10
+ MCQStudentBertCat and MCQStudentBertSum are versatile BERT-based models fine-tuned from MCQBert on student interactions (question + answer textual pairs) to predict student answers to new questions within Intelligent Tutoring Systems (ITS). Using [MCQBert](https://huggingface.co/epfl-ml4ed/MCQBert) as a base model, MCQStudentBert is able to understand and process educational language in German, especially in grammar teaching, where sentences contain mistakes. The model processes both the text of the questions and the answer, along with past student interaction via student embeddings, to predict if the answer will be chosen by the student in an MCQ setting.
11
+ It is trained on one objective: given a question and answer pair, and a student interaction embedding vector, predict whether the answer has been chosen by the student or not.
12
+ MCQStudentBertCat uses a concatenation strategy to integrate student embedding before the classifier layers, while MCQStudentBertSum sums the student embedding and the question-answer embedding at the input of the BERT model.
13
 
14
+ ### Model Sources
15
 
16
+ - **Repository:** [https://github.com/epfl-ml4ed/answer-forecasting](https://github.com/epfl-ml4ed/answer-forecasting)
17
+ - **Paper:** [https://arxiv.org/abs/2405.20079](https://arxiv.org/abs/2405.20079)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
  ### Direct Use
20
 
21
+ MCQStudentBert is primarily intended to predict what a student will answer to a given question in Intelligent Tutoring Systems (ITS). Given a question and answer pair and an interaction embedding vector, it performs a binary classification to decide whether the student will choose that answer or not.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
  ## Bias, Risks, and Limitations
24
 
25
+ While MCQStudentBert is effective, it has some limitations:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
+ It is primarily trained on German language MCQs and may not generalize well to other languages or subjects without further fine-tuning.
28
+ The model may not capture all nuances of student learning behavior, particularly in diverse educational contexts.
29
 
30
+ Privacy: No personally identifiable information has been used in any training phase.
31
 
32
+ ## How to Use MCQBert
33
 
34
+ ```python
35
+ import torch
36
+ import pandas as pd
37
+ from transformers import AutoModelForCausalLM, AutoModel, AutoTokenizer
38
 
39
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
40
+ token = my_hf_token
41
 
42
+ # load Mistral 7B Instruct to be used as the embedding model
43
+ tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1", token=token)
44
+ model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1", torch_dtype=torch.float16, token=token).to(device)
45
 
46
+ # load MCQStudentBert
47
+ model_bert = AutoModel.from_pretrained("epfl-ml4ed/MCQStudentBertCat", trust_remote_code=True, token=token).to(device)
48
+ tokenizer_bert = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-uncased")
49
 
50
+ with torch.no_grad():
51
+ # create interactions list and use them to create the student embedding
52
+ interactions = pd.DataFrame([
53
+ {"question": question_text, "choice": student_answer},
54
+ ...
55
+ ])
56
+ joined_interactions = f"{tokenizer.sep_token}".join(interactions.apply(lambda x: f"Q: {x['question']}{tokenizer.sep_token}A: {x['choice']}", axis=1).values)
57
 
58
+ embeddings = model(
59
+ **tokenizer(joined_interactions, return_tensors="pt", truncation=True, max_length=4096).to(device),
60
+ output_hidden_states=True
61
+ ).hidden_states[-1].squeeze(0).mean(0)
62
 
63
+ # use MCQStudentBert for Student Answer Forecasting
64
+ output = torch.nn.functional.sigmoid(
65
+ model_bert(
66
+ tokenizer_bert(last_question, return_tensors="pt").input_ids.to(device),
67
+ embeddings.to(torch.float32)
68
+ ).cpu()
69
+ ).item() > 0.5
70
 
71
+ print(output)
72
+ ```
73
 
74
+ ## Training Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
+ The model was trained on 110k student interaction sequences for 3 epochs with a batch size of 16. The optimizer used is AdamW with learning rate = 1.75e-5, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), and a weight decay of 0.01
77
 
 
78
 
79
+ ## Citation
80
 
81
+ If you find this useful in your work, please cite our paper
82
 
83
+ ```
84
+ @misc{gado2024student,
85
+ title={Student Answer Forecasting: Transformer-Driven Answer Choice Prediction for Language Learning},
86
+ author={Elena Grazia Gado and Tommaso Martorella and Luca Zunino and Paola Mejia-Domenzain and Vinitra Swamy and Jibril Frej and Tanja Käser},
87
+ year={2024},
88
+ eprint={2405.20079},
89
+ archivePrefix={arXiv},
90
+ }
91
+ ```
92
 
93
+ ```
94
+ Gado, E., Martorella, T., Zunino, L., Mejia-Domenzain, P., Swamy, V., Frej, J., Käser, T. (2024).
95
+ Student Answer Forecasting: Transformer-Driven Answer Choice Prediction for Language Learning.
96
+ In: Proceedings of the Conference on Educational Data Mining (EDM 2024).
97
+ ```