Whisper Medium Mn - Erkhembayar Gantulga

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 17.0 and Google Fleurs datasets. It achieves the following results on the evaluation set:

  • Loss: 0.1083
  • Wer: 12.9580

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

Datasets used for training:

For training, combined Common Voice 17.0 and Google Fleurs datasets:

from datasets import load_dataset, DatasetDict, concatenate_datasets
from datasets import Audio

common_voice = DatasetDict()

common_voice["train"] = load_dataset("mozilla-foundation/common_voice_17_0", "mn", split="train+validation+validated", use_auth_token=True)
common_voice["test"] = load_dataset("mozilla-foundation/common_voice_17_0", "mn", split="test", use_auth_token=True)

common_voice = common_voice.cast_column("audio", Audio(sampling_rate=16000))

common_voice = common_voice.remove_columns(
    ["accent", "age", "client_id", "down_votes", "gender", "locale", "path", "segment", "up_votes", "variant"]
)

google_fleurs = DatasetDict()

google_fleurs["train"] = load_dataset("google/fleurs", "mn_mn", split="train+validation", use_auth_token=True)
google_fleurs["test"] = load_dataset("google/fleurs", "mn_mn", split="test", use_auth_token=True)

google_fleurs = google_fleurs.remove_columns(
    ["id", "num_samples", "path", "raw_transcription", "gender", "lang_id", "language", "lang_group_id"]
)
google_fleurs = google_fleurs.rename_column("transcription", "sentence")

dataset = DatasetDict()
dataset["train"] = concatenate_datasets([common_voice["train"], google_fleurs["train"]])
dataset["test"] = concatenate_datasets([common_voice["test"], google_fleurs["test"]])

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2986 0.4912 500 0.3557 40.1515
0.2012 0.9823 1000 0.2310 28.3512
0.099 1.4735 1500 0.1864 23.4453
0.0733 1.9646 2000 0.1405 18.3024
0.0231 2.4558 2500 0.1308 16.5645
0.0191 2.9470 3000 0.1155 14.5569
0.0059 3.4381 3500 0.1122 13.4728
0.006 3.9293 4000 0.1083 12.9580

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
26
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for erkhem-gantulga/whisper-medium-mn

Finetuned
(475)
this model

Datasets used to train erkhem-gantulga/whisper-medium-mn

Space using erkhem-gantulga/whisper-medium-mn 1

Evaluation results