|
--- |
|
language: |
|
- mn |
|
base_model: openai/whisper-medium |
|
library_name: transformers |
|
datasets: |
|
- mozilla-foundation/common_voice_17_0 |
|
- google/fleurs |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
widget: |
|
- example_title: Common Voice sample 1 |
|
src: sample1.flac |
|
- example_title: Common Voice sample 2 |
|
src: sample2.flac |
|
model-index: |
|
- name: whisper-medium-mn |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 17.0 |
|
type: common_voice_17_0 |
|
config: mn |
|
split: test |
|
args: |
|
language: mn |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 12.9580 |
|
pipeline_tag: automatic-speech-recognition |
|
license: apache-2.0 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Medium Mn - Erkhembayar Gantulga |
|
|
|
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 17.0 and Google Fleurs datasets. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1083 |
|
- Wer: 12.9580 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
Datasets used for training: |
|
- [Common Voice 17.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0) |
|
- [Google Fleurs](https://huggingface.co/datasets/google/fleurs) |
|
|
|
For training, combined Common Voice 17.0 and Google Fleurs datasets: |
|
|
|
``` |
|
from datasets import load_dataset, DatasetDict, concatenate_datasets |
|
from datasets import Audio |
|
|
|
common_voice = DatasetDict() |
|
|
|
common_voice["train"] = load_dataset("mozilla-foundation/common_voice_17_0", "mn", split="train+validation+validated", use_auth_token=True) |
|
common_voice["test"] = load_dataset("mozilla-foundation/common_voice_17_0", "mn", split="test", use_auth_token=True) |
|
|
|
common_voice = common_voice.cast_column("audio", Audio(sampling_rate=16000)) |
|
|
|
common_voice = common_voice.remove_columns( |
|
["accent", "age", "client_id", "down_votes", "gender", "locale", "path", "segment", "up_votes", "variant"] |
|
) |
|
|
|
google_fleurs = DatasetDict() |
|
|
|
google_fleurs["train"] = load_dataset("google/fleurs", "mn_mn", split="train+validation", use_auth_token=True) |
|
google_fleurs["test"] = load_dataset("google/fleurs", "mn_mn", split="test", use_auth_token=True) |
|
|
|
google_fleurs = google_fleurs.remove_columns( |
|
["id", "num_samples", "path", "raw_transcription", "gender", "lang_id", "language", "lang_group_id"] |
|
) |
|
google_fleurs = google_fleurs.rename_column("transcription", "sentence") |
|
|
|
dataset = DatasetDict() |
|
dataset["train"] = concatenate_datasets([common_voice["train"], google_fleurs["train"]]) |
|
dataset["test"] = concatenate_datasets([common_voice["test"], google_fleurs["test"]]) |
|
``` |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- training_steps: 4000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:| |
|
| 0.2986 | 0.4912 | 500 | 0.3557 | 40.1515 | |
|
| 0.2012 | 0.9823 | 1000 | 0.2310 | 28.3512 | |
|
| 0.099 | 1.4735 | 1500 | 0.1864 | 23.4453 | |
|
| 0.0733 | 1.9646 | 2000 | 0.1405 | 18.3024 | |
|
| 0.0231 | 2.4558 | 2500 | 0.1308 | 16.5645 | |
|
| 0.0191 | 2.9470 | 3000 | 0.1155 | 14.5569 | |
|
| 0.0059 | 3.4381 | 3500 | 0.1122 | 13.4728 | |
|
| 0.006 | 3.9293 | 4000 | 0.1083 | 12.9580 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|