ethan-ky's picture
Add new SentenceTransformer model.
f37b046 verified
metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language: []
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:6300
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      As of January 31, 2023, the weighted average remaining lease term for
      operating leases was 7 years and for finance leases was 3 years.
    sentences:
      - >-
        What was the Company's net deferred tax assets as of December 30, 2023,
        and December 31, 2022?
      - >-
        What were the weighted average remaining lease terms for operating and
        finance leases as of January 31, 2023?
      - How much did the net investment income change from 2021 to 2023?
  - source_sentence: The 4.500% notes due in August 2034 have an interest rate of 4.55%.
    sentences:
      - >-
        What types of insurance coverage does the company provide to its
        employees at no premium cost, as part of their general employee benefits
        package?
      - What is the interest rate for the 4.500% notes due in August 2034?
      - How much did the company's revenues decrease in 2023 compared to 2022?
  - source_sentence: >-
      In 2023, other income (expense), net included $376 million of interest
      income, partially offset by $167 million of net unrealized losses on
      equity investments. Other income (expense), net in 2022 included $657
      million of net unrealized losses on equity investments, partially offset
      by $106 million of interest income.
    sentences:
      - What contributed to the net other income (expense) in 2023?
      - What types of products does the Canada operation offer?
      - What was the net change in cash and cash equivalents in 2022?
  - source_sentence: >-
      We believe the claims in these cases are without merit and are vigorously
      defending these lawsuits.
    sentences:
      - >-
        Where in the Annual Report can one find a description of certain legal
        matters and their impact on the company?
      - >-
        What is the goal of the company regarding its global corporate
        operations by 2030?
      - >-
        What is the stance of the defending airlines on the claims made against
        them in the capacity antitrust litigation?
  - source_sentence: >-
      North America's total net revenues for the fiscal year ended October 1,
      2023, were $26,569.6 million.
    sentences:
      - What was the total net revenue for North America in fiscal 2023?
      - >-
        What are the consequences of impermissible use or disclosure of PHI
        according to the HITECH Act?
      - What does the index in a financial report indicate?
model-index:
  - name: SentenceTransformer based on BAAI/bge-base-en-v1.5
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.6171428571428571
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7457142857142857
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8114285714285714
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8585714285714285
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6171428571428571
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.24857142857142858
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16228571428571428
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08585714285714285
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6171428571428571
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7457142857142857
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8114285714285714
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8585714285714285
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7357204832416036
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6965260770975052
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7015509951793545
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.6214285714285714
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.74
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8642857142857143
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6214285714285714
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.24666666666666665
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.15999999999999998
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08642857142857142
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6214285714285714
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.74
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8642857142857143
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.738181682287809
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6983236961451246
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7027820040111107
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.6
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7271428571428571
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.7928571428571428
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8442857142857143
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.24238095238095236
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.15857142857142856
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08442857142857142
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7271428571428571
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.7928571428571428
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8442857142857143
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7182448637999702
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6782879818594099
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.683606591058064
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.5728571428571428
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7014285714285714
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.7557142857142857
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8157142857142857
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5728571428571428
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2338095238095238
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1511428571428571
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08157142857142856
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5728571428571428
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7014285714285714
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.7557142857142857
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8157142857142857
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6915163160852085
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6521536281179136
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6580414471513885
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.5142857142857142
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.6371428571428571
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.6728571428571428
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7357142857142858
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5142857142857142
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.21238095238095234
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.13457142857142856
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.07357142857142857
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5142857142857142
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.6371428571428571
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.6728571428571428
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.7357142857142858
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6197107516374883
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.5832369614512468
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.5907376271746598
            name: Cosine Map@100

SentenceTransformer based on BAAI/bge-base-en-v1.5

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ethan-ky/bge-base-financial-matryoshka")
# Run inference
sentences = [
    "North America's total net revenues for the fiscal year ended October 1, 2023, were $26,569.6 million.",
    'What was the total net revenue for North America in fiscal 2023?',
    'What are the consequences of impermissible use or disclosure of PHI according to the HITECH Act?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6171
cosine_accuracy@3 0.7457
cosine_accuracy@5 0.8114
cosine_accuracy@10 0.8586
cosine_precision@1 0.6171
cosine_precision@3 0.2486
cosine_precision@5 0.1623
cosine_precision@10 0.0859
cosine_recall@1 0.6171
cosine_recall@3 0.7457
cosine_recall@5 0.8114
cosine_recall@10 0.8586
cosine_ndcg@10 0.7357
cosine_mrr@10 0.6965
cosine_map@100 0.7016

Information Retrieval

Metric Value
cosine_accuracy@1 0.6214
cosine_accuracy@3 0.74
cosine_accuracy@5 0.8
cosine_accuracy@10 0.8643
cosine_precision@1 0.6214
cosine_precision@3 0.2467
cosine_precision@5 0.16
cosine_precision@10 0.0864
cosine_recall@1 0.6214
cosine_recall@3 0.74
cosine_recall@5 0.8
cosine_recall@10 0.8643
cosine_ndcg@10 0.7382
cosine_mrr@10 0.6983
cosine_map@100 0.7028

Information Retrieval

Metric Value
cosine_accuracy@1 0.6
cosine_accuracy@3 0.7271
cosine_accuracy@5 0.7929
cosine_accuracy@10 0.8443
cosine_precision@1 0.6
cosine_precision@3 0.2424
cosine_precision@5 0.1586
cosine_precision@10 0.0844
cosine_recall@1 0.6
cosine_recall@3 0.7271
cosine_recall@5 0.7929
cosine_recall@10 0.8443
cosine_ndcg@10 0.7182
cosine_mrr@10 0.6783
cosine_map@100 0.6836

Information Retrieval

Metric Value
cosine_accuracy@1 0.5729
cosine_accuracy@3 0.7014
cosine_accuracy@5 0.7557
cosine_accuracy@10 0.8157
cosine_precision@1 0.5729
cosine_precision@3 0.2338
cosine_precision@5 0.1511
cosine_precision@10 0.0816
cosine_recall@1 0.5729
cosine_recall@3 0.7014
cosine_recall@5 0.7557
cosine_recall@10 0.8157
cosine_ndcg@10 0.6915
cosine_mrr@10 0.6522
cosine_map@100 0.658

Information Retrieval

Metric Value
cosine_accuracy@1 0.5143
cosine_accuracy@3 0.6371
cosine_accuracy@5 0.6729
cosine_accuracy@10 0.7357
cosine_precision@1 0.5143
cosine_precision@3 0.2124
cosine_precision@5 0.1346
cosine_precision@10 0.0736
cosine_recall@1 0.5143
cosine_recall@3 0.6371
cosine_recall@5 0.6729
cosine_recall@10 0.7357
cosine_ndcg@10 0.6197
cosine_mrr@10 0.5832
cosine_map@100 0.5907

Training Details

Training Dataset

Unnamed Dataset

  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 2 tokens
    • mean: 45.35 tokens
    • max: 512 tokens
    • min: 2 tokens
    • mean: 20.67 tokens
    • max: 46 tokens
  • Samples:
    positive anchor
    Our ability to develop and operate units at the right locations and to deliver a customer-centric omni-channel experience largely determines our competitive position within the retail industry. We believe price leadership is a critical part of our business model and we continue to focus on moving our markets towards an EDLP approach. Additionally, our ability to operate food departments effectively has a significant impact on our competitive position in the markets where we operate. What factors contribute to Walmart International's competitive position?
    tax annual aggregate losses incurred in any year from U.S. hurricane events could be in excess of $3,827 million (or 6.4 percent of total Chubb shareholders’ equity at December 31, 2023). What is the expected maximum potential loss from hurricane events for Chubb as of the end of 2023?
    The 'Glossary of Terms and Acronyms’ is included on pages 315-321. What is included on pages 315 to 321 of the document?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.8122 10 1.3939 - - - - -
0.9746 12 - 0.658 0.6836 0.7028 0.5907 0.7016
1.6244 20 1.3574 - - - - -
1.9492 24 - 0.6580 0.6836 0.7028 0.5907 0.7016
2.4365 30 1.3485 - - - - -
2.9239 36 - 0.6580 0.6836 0.7028 0.5907 0.7016
3.2487 40 1.3606 - - - - -
3.8985 48 - 0.6580 0.6836 0.7028 0.5907 0.7016
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.9.19
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.33.0
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}