metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
As of January 31, 2023, the weighted average remaining lease term for
operating leases was 7 years and for finance leases was 3 years.
sentences:
- >-
What was the Company's net deferred tax assets as of December 30, 2023,
and December 31, 2022?
- >-
What were the weighted average remaining lease terms for operating and
finance leases as of January 31, 2023?
- How much did the net investment income change from 2021 to 2023?
- source_sentence: The 4.500% notes due in August 2034 have an interest rate of 4.55%.
sentences:
- >-
What types of insurance coverage does the company provide to its
employees at no premium cost, as part of their general employee benefits
package?
- What is the interest rate for the 4.500% notes due in August 2034?
- How much did the company's revenues decrease in 2023 compared to 2022?
- source_sentence: >-
In 2023, other income (expense), net included $376 million of interest
income, partially offset by $167 million of net unrealized losses on
equity investments. Other income (expense), net in 2022 included $657
million of net unrealized losses on equity investments, partially offset
by $106 million of interest income.
sentences:
- What contributed to the net other income (expense) in 2023?
- What types of products does the Canada operation offer?
- What was the net change in cash and cash equivalents in 2022?
- source_sentence: >-
We believe the claims in these cases are without merit and are vigorously
defending these lawsuits.
sentences:
- >-
Where in the Annual Report can one find a description of certain legal
matters and their impact on the company?
- >-
What is the goal of the company regarding its global corporate
operations by 2030?
- >-
What is the stance of the defending airlines on the claims made against
them in the capacity antitrust litigation?
- source_sentence: >-
North America's total net revenues for the fiscal year ended October 1,
2023, were $26,569.6 million.
sentences:
- What was the total net revenue for North America in fiscal 2023?
- >-
What are the consequences of impermissible use or disclosure of PHI
according to the HITECH Act?
- What does the index in a financial report indicate?
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6171428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7457142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8114285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8585714285714285
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6171428571428571
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.24857142857142858
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16228571428571428
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08585714285714285
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6171428571428571
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7457142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8114285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8585714285714285
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7357204832416036
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6965260770975052
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7015509951793545
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6214285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.74
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8642857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6214285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.24666666666666665
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08642857142857142
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6214285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.74
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8642857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.738181682287809
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6983236961451246
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7027820040111107
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7271428571428571
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7928571428571428
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8442857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.24238095238095236
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15857142857142856
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08442857142857142
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7271428571428571
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7928571428571428
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8442857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7182448637999702
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6782879818594099
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.683606591058064
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.5728571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7014285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7557142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8157142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5728571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2338095238095238
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1511428571428571
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08157142857142856
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5728571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7014285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7557142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8157142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6915163160852085
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6521536281179136
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6580414471513885
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.5142857142857142
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6371428571428571
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6728571428571428
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7357142857142858
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5142857142857142
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.21238095238095234
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.13457142857142856
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07357142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5142857142857142
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6371428571428571
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6728571428571428
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7357142857142858
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6197107516374883
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5832369614512468
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5907376271746598
name: Cosine Map@100
SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("ethan-ky/bge-base-financial-matryoshka")
sentences = [
"North America's total net revenues for the fiscal year ended October 1, 2023, were $26,569.6 million.",
'What was the total net revenue for North America in fiscal 2023?',
'What are the consequences of impermissible use or disclosure of PHI according to the HITECH Act?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6171 |
cosine_accuracy@3 |
0.7457 |
cosine_accuracy@5 |
0.8114 |
cosine_accuracy@10 |
0.8586 |
cosine_precision@1 |
0.6171 |
cosine_precision@3 |
0.2486 |
cosine_precision@5 |
0.1623 |
cosine_precision@10 |
0.0859 |
cosine_recall@1 |
0.6171 |
cosine_recall@3 |
0.7457 |
cosine_recall@5 |
0.8114 |
cosine_recall@10 |
0.8586 |
cosine_ndcg@10 |
0.7357 |
cosine_mrr@10 |
0.6965 |
cosine_map@100 |
0.7016 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6214 |
cosine_accuracy@3 |
0.74 |
cosine_accuracy@5 |
0.8 |
cosine_accuracy@10 |
0.8643 |
cosine_precision@1 |
0.6214 |
cosine_precision@3 |
0.2467 |
cosine_precision@5 |
0.16 |
cosine_precision@10 |
0.0864 |
cosine_recall@1 |
0.6214 |
cosine_recall@3 |
0.74 |
cosine_recall@5 |
0.8 |
cosine_recall@10 |
0.8643 |
cosine_ndcg@10 |
0.7382 |
cosine_mrr@10 |
0.6983 |
cosine_map@100 |
0.7028 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6 |
cosine_accuracy@3 |
0.7271 |
cosine_accuracy@5 |
0.7929 |
cosine_accuracy@10 |
0.8443 |
cosine_precision@1 |
0.6 |
cosine_precision@3 |
0.2424 |
cosine_precision@5 |
0.1586 |
cosine_precision@10 |
0.0844 |
cosine_recall@1 |
0.6 |
cosine_recall@3 |
0.7271 |
cosine_recall@5 |
0.7929 |
cosine_recall@10 |
0.8443 |
cosine_ndcg@10 |
0.7182 |
cosine_mrr@10 |
0.6783 |
cosine_map@100 |
0.6836 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5729 |
cosine_accuracy@3 |
0.7014 |
cosine_accuracy@5 |
0.7557 |
cosine_accuracy@10 |
0.8157 |
cosine_precision@1 |
0.5729 |
cosine_precision@3 |
0.2338 |
cosine_precision@5 |
0.1511 |
cosine_precision@10 |
0.0816 |
cosine_recall@1 |
0.5729 |
cosine_recall@3 |
0.7014 |
cosine_recall@5 |
0.7557 |
cosine_recall@10 |
0.8157 |
cosine_ndcg@10 |
0.6915 |
cosine_mrr@10 |
0.6522 |
cosine_map@100 |
0.658 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5143 |
cosine_accuracy@3 |
0.6371 |
cosine_accuracy@5 |
0.6729 |
cosine_accuracy@10 |
0.7357 |
cosine_precision@1 |
0.5143 |
cosine_precision@3 |
0.2124 |
cosine_precision@5 |
0.1346 |
cosine_precision@10 |
0.0736 |
cosine_recall@1 |
0.5143 |
cosine_recall@3 |
0.6371 |
cosine_recall@5 |
0.6729 |
cosine_recall@10 |
0.7357 |
cosine_ndcg@10 |
0.6197 |
cosine_mrr@10 |
0.5832 |
cosine_map@100 |
0.5907 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 2 tokens
- mean: 45.35 tokens
- max: 512 tokens
|
- min: 2 tokens
- mean: 20.67 tokens
- max: 46 tokens
|
- Samples:
positive |
anchor |
Our ability to develop and operate units at the right locations and to deliver a customer-centric omni-channel experience largely determines our competitive position within the retail industry. We believe price leadership is a critical part of our business model and we continue to focus on moving our markets towards an EDLP approach. Additionally, our ability to operate food departments effectively has a significant impact on our competitive position in the markets where we operate. |
What factors contribute to Walmart International's competitive position? |
tax annual aggregate losses incurred in any year from U.S. hurricane events could be in excess of $3,827 million (or 6.4 percent of total Chubb shareholders’ equity at December 31, 2023). |
What is the expected maximum potential loss from hurricane events for Chubb as of the end of 2023? |
The 'Glossary of Terms and Acronyms’ is included on pages 315-321. |
What is included on pages 315 to 321 of the document? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.8122 |
10 |
1.3939 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.658 |
0.6836 |
0.7028 |
0.5907 |
0.7016 |
1.6244 |
20 |
1.3574 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.6580 |
0.6836 |
0.7028 |
0.5907 |
0.7016 |
2.4365 |
30 |
1.3485 |
- |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.6580 |
0.6836 |
0.7028 |
0.5907 |
0.7016 |
3.2487 |
40 |
1.3606 |
- |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.6580 |
0.6836 |
0.7028 |
0.5907 |
0.7016 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.9.19
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.33.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}