File size: 2,421 Bytes
8670075
a5202d9
 
 
 
 
 
 
8670075
 
a5202d9
 
8670075
a5202d9
8670075
a5202d9
 
 
 
 
 
 
8670075
a5202d9
8670075
a5202d9
8670075
a5202d9
8670075
a5202d9
8670075
a5202d9
8670075
a5202d9
8670075
a5202d9
8670075
a5202d9
8670075
a5202d9
 
 
 
 
 
 
 
 
 
8670075
a5202d9
8670075
a5202d9
 
 
 
 
 
 
 
 
 
 
 
8670075
 
a5202d9
8670075
a5202d9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
base_model: facebook/wav2vec2-large
tags:
- generated_from_trainer
model-index:
- name: k2e-20s_asr-scr_w2v2-large_001
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# k2e-20s_asr-scr_w2v2-large_001

This model is a fine-tuned version of [facebook/wav2vec2-large](https://huggingface.co/facebook/wav2vec2-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7509
- Per: 0.1453
- Pcc: 0.6324
- Ctc Loss: 0.5111
- Mse Loss: 1.2263

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 1
- seed: 1111
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2235
- training_steps: 22350
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Per    | Pcc    | Ctc Loss | Mse Loss |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:--------:|:--------:|
| 14.3265       | 3.0   | 2235  | 4.6461          | 0.9890 | 0.6160 | 3.6176   | 1.0856   |
| 3.4446        | 6.01  | 4470  | 2.8757          | 0.3498 | 0.6516 | 1.0729   | 1.7895   |
| 1.5549        | 9.01  | 6705  | 2.0517          | 0.1846 | 0.6507 | 0.6672   | 1.3503   |
| 1.1194        | 12.02 | 8940  | 1.8625          | 0.1650 | 0.6443 | 0.5914   | 1.2388   |
| 0.9031        | 15.02 | 11175 | 1.8899          | 0.1554 | 0.6312 | 0.5473   | 1.3054   |
| 0.7614        | 18.02 | 13410 | 1.5491          | 0.1522 | 0.6307 | 0.5349   | 1.0200   |
| 0.6483        | 21.03 | 15645 | 1.8357          | 0.1481 | 0.6304 | 0.5215   | 1.2852   |
| 0.5561        | 24.03 | 17880 | 2.0576          | 0.1468 | 0.6263 | 0.5191   | 1.4774   |
| 0.5108        | 27.04 | 20115 | 1.8949          | 0.1452 | 0.6351 | 0.5090   | 1.3489   |
| 0.4778        | 30.04 | 22350 | 1.7509          | 0.1453 | 0.6324 | 0.5111   | 1.2263   |


### Framework versions

- Transformers 4.38.1
- Pytorch 2.0.1
- Datasets 2.16.1
- Tokenizers 0.15.2