File size: 7,246 Bytes
b330d8b aa658c8 de665fe aa658c8 2301d1d d483345 aa658c8 d7f6da1 aa658c8 a87fbc3 aa658c8 a87fbc3 aa658c8 4210646 aa658c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
---
tags:
- mms
language:
- ab
- af
- ak
- am
- ar
- as
- av
- ay
- az
- ba
- bm
- be
- bn
- bi
- bo
- sh
- br
- bg
- ca
- cs
- ce
- cv
- ku
- cy
- da
- de
- dv
- dz
- el
- en
- eo
- et
- eu
- ee
- fo
- fa
- fj
- fi
- fr
- fy
- ff
- ga
- gl
- gn
- gu
- zh
- ht
- ha
- he
- hi
- sh
- hu
- hy
- ig
- ia
- ms
- is
- it
- jv
- ja
- kn
- ka
- kk
- kr
- km
- ki
- rw
- ky
- ko
- kv
- lo
- la
- lv
- ln
- lt
- lb
- lg
- mh
- ml
- mr
- ms
- mk
- mg
- mt
- mn
- mi
- my
- zh
- nl
- 'no'
- 'no'
- ne
- ny
- oc
- om
- or
- os
- pa
- pl
- pt
- ms
- ps
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- ro
- rn
- ru
- sg
- sk
- sl
- sm
- sn
- sd
- so
- es
- sq
- su
- sv
- sw
- ta
- tt
- te
- tg
- tl
- th
- ti
- ts
- tr
- uk
- ms
- vi
- wo
- xh
- ms
- yo
- ms
- zu
- za
license: cc-by-nc-4.0
datasets:
- google/fleurs
metrics:
- wer
---
# Massively Multilingual Speech (MMS) - Finetuned ASR - FL102
This checkpoint is a model fine-tuned for multi-lingual ASR and part of Facebook's [Massive Multilingual Speech project](https://research.facebook.com/publications/scaling-speech-technology-to-1000-languages/).
This checkpoint is based on the [Wav2Vec2 architecture](https://huggingface.co/docs/transformers/model_doc/wav2vec2) and makes use of adapter models to transcribe 100+ languages.
The checkpoint consists of **1 billion parameters** and has been fine-tuned from [facebook/mms-1b](https://huggingface.co/facebook/mms-1b) on 102 languages of [Fleurs](https://huggingface.co/datasets/google/fleurs).
## Table Of Content
- [Example](#example)
- [Supported Languages](#supported-languages)
- [Model details](#model-details)
- [Additional links](#additional-links)
## Example
This MMS checkpoint can be used with [Transformers](https://github.com/huggingface/transformers) to transcribe audio of 1107 different
languages. Let's look at a simple example.
First, we install transformers and some other libraries
```
pip install torch accelerate torchaudio datasets
pip install --upgrade transformers
````
**Note**: In order to use MMS you need to have at least `transformers >= 4.30` installed. If the `4.30` version
is not yet available [on PyPI](https://pypi.org/project/transformers/) make sure to install `transformers` from
source:
```
pip install git+https://github.com/huggingface/transformers.git
```
Next, we load a couple of audio samples via `datasets`. Make sure that the audio data is sampled to 16000 kHz.
```py
from datasets import load_dataset, Audio
# English
stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "en", split="test", streaming=True)
stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
en_sample = next(iter(stream_data))["audio"]["array"]
# French
stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "fr", split="test", streaming=True)
stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
fr_sample = next(iter(stream_data))["audio"]["array"]
```
Next, we load the model and processor
```py
from transformers import Wav2Vec2ForCTC, AutoProcessor
import torch
model_id = "facebook/mms-1b-fl102"
processor = AutoProcessor.from_pretrained(model_id)
model = Wav2Vec2ForCTC.from_pretrained(model_id)
```
Now we process the audio data, pass the processed audio data to the model and transcribe the model output, just like we usually do for Wav2Vec2 models such as [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h)
```py
inputs = processor(en_sample, sampling_rate=16_000, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs).logits
ids = torch.argmax(outputs, dim=-1)[0]
transcription = processor.decode(ids)
# 'joe keton disapproved of films and buster also had reservations about the media'
```
We can now keep the same model in memory and simply switch out the language adapters by calling the convenient [`load_adapter()`]() function for the model and [`set_target_lang()`]() for the tokenizer. We pass the target language as an input - "fra" for French.
```py
processor.tokenizer.set_target_lang("fra")
model.load_adapter("fra")
inputs = processor(fr_sample, sampling_rate=16_000, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs).logits
ids = torch.argmax(outputs, dim=-1)[0]
transcription = processor.decode(ids)
# "ce dernier est volé tout au long de l'histoire romaine"
```
In the same way the language can be switched out for all other supported languages. Please have a look at:
```py
processor.tokenizer.vocab.keys()
```
For more details, please have a look at [the official docs](https://huggingface.co/docs/transformers/main/en/model_doc/mms).
## Supported Languages
This model supports 102 languages. Unclick the following to toogle all supported languages of this checkpoint in [ISO 639-3 code](https://en.wikipedia.org/wiki/ISO_639-3).
You can find more details about the languages and their ISO 649-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html).
<details>
<summary>Click to toggle</summary>
- afr
- amh
- ara
- asm
- ast
- azj-script_latin
- bel
- ben
- bos
- bul
- cat
- ceb
- ces
- ckb
- cmn-script_simplified
- cym
- dan
- deu
- ell
- eng
- est
- fas
- fin
- fra
- ful
- gle
- glg
- guj
- hau
- heb
- hin
- hrv
- hun
- hye
- ibo
- ind
- isl
- ita
- jav
- jpn
- kam
- kan
- kat
- kaz
- kea
- khm
- kir
- kor
- lao
- lav
- lin
- lit
- ltz
- lug
- luo
- mal
- mar
- mkd
- mlt
- mon
- mri
- mya
- nld
- nob
- npi
- nso
- nya
- oci
- orm
- ory
- pan
- pol
- por
- pus
- ron
- rus
- slk
- slv
- sna
- snd
- som
- spa
- srp-script_latin
- swe
- swh
- tam
- tel
- tgk
- tgl
- tha
- tur
- ukr
- umb
- urd-script_arabic
- uzb-script_latin
- vie
- wol
- xho
- yor
- yue-script_traditional
- zlm
- zul
</details>
## Model details
- **Developed by:** Vineel Pratap et al.
- **Model type:** Multi-Lingual Automatic Speech Recognition model
- **Language(s):** 100+ languages, see [supported languages](#supported-languages)
- **License:** CC-BY-NC 4.0 license
- **Num parameters**: 1 billion
- **Audio sampling rate**: 16,000 kHz
- **Cite as:**
@article{pratap2023mms,
title={Scaling Speech Technology to 1,000+ Languages},
author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli},
journal={arXiv},
year={2023}
}
## Additional Links
- [Blog post](https://ai.facebook.com/blog/multilingual-model-speech-recognition/)
- [Transformers documentation](https://huggingface.co/docs/transformers/main/en/model_doc/mms).
- [Paper](https://arxiv.org/abs/2305.13516)
- [GitHub Repository](https://github.com/facebookresearch/fairseq/tree/main/examples/mms#asr)
- [Other **MMS** checkpoints](https://huggingface.co/models?other=mms)
- MMS base checkpoints:
- [facebook/mms-1b](https://huggingface.co/facebook/mms-1b)
- [facebook/mms-300m](https://huggingface.co/facebook/mms-300m)
- [Official Space](https://huggingface.co/spaces/facebook/MMS)
|