File size: 1,489 Bytes
3e5c93e
 
 
267862e
3e5c93e
 
 
 
 
 
 
 
 
 
 
 
267862e
 
6168363
 
 
 
 
 
3e5c93e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267862e
2c107e8
267862e
3e5c93e
2c107e8
 
3e5c93e
 
 
152aebd
3e5c93e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
library_name: transformers
license: mit
base_model: Sana1207/Hindi_SpeechT5_finetuned
tags:
- generated_from_trainer
model-index:
- name: Sindhi-TTS
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Sindhi-TTS

This model is a fine-tuned version of [Sana1207/Hindi_SpeechT5_finetuned](https://huggingface.co/Sana1207/Hindi_SpeechT5_finetuned) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.4860
- eval_runtime: 91.8769
- eval_samples_per_second: 19.396
- eval_steps_per_second: 9.698
- epoch: 15.9830
- step: 4000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 5000
- mixed_precision_training: Native AMP

### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3