File size: 1,489 Bytes
3e5c93e 267862e 3e5c93e 267862e 6168363 3e5c93e 267862e 2c107e8 267862e 3e5c93e 2c107e8 3e5c93e 152aebd 3e5c93e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
library_name: transformers
license: mit
base_model: Sana1207/Hindi_SpeechT5_finetuned
tags:
- generated_from_trainer
model-index:
- name: Sindhi-TTS
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Sindhi-TTS
This model is a fine-tuned version of [Sana1207/Hindi_SpeechT5_finetuned](https://huggingface.co/Sana1207/Hindi_SpeechT5_finetuned) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.4860
- eval_runtime: 91.8769
- eval_samples_per_second: 19.396
- eval_steps_per_second: 9.698
- epoch: 15.9830
- step: 4000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 5000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|