fakezeta commited on
Commit
426d522
1 Parent(s): d556da2

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,1149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - de
5
+ - fr
6
+ - it
7
+ - pt
8
+ - hi
9
+ - es
10
+ - th
11
+ license: llama3.1
12
+ pipeline_tag: text-generation
13
+ tags:
14
+ - facebook
15
+ - meta
16
+ - pytorch
17
+ - llama
18
+ - llama-3
19
+ ---
20
+
21
+
22
+ # OpenVINO IR model with int4 awq quantization with scale estimation on wikitext2 dataset
23
+
24
+ Model definition for LocalAI:
25
+ ```yaml
26
+ name: llama-3.1
27
+ backend: transformers
28
+ parameters:
29
+ model: fakezeta/Meta-Llama-3.1-8B-Instruct-ov-awq
30
+ context_size: 8192
31
+ type: OVModelForCausalLM
32
+ template:
33
+ chat_message: |
34
+ <|start_header_id|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}<|end_header_id|>
35
+
36
+ {{ if .FunctionCall -}}
37
+ Function call:
38
+ {{ else if eq .RoleName "tool" -}}
39
+ Function response:
40
+ {{ end -}}
41
+ {{ if .Content -}}
42
+ {{.Content -}}
43
+ {{ else if .FunctionCall -}}
44
+ {{ toJson .FunctionCall -}}
45
+ {{ end -}}
46
+ <|eot_id|>
47
+ function: |
48
+ <|start_header_id|>system<|end_header_id|>
49
+ You have access to the following functions:
50
+ {{range .Functions}}
51
+ Use the function '{{.Name}}' to '{{.Description}}'
52
+ {{toJson .Parameters}}
53
+ {{end}}
54
+
55
+ Think very carefully before calling functions.
56
+ If a you choose to call a function ONLY reply in the following format with no prefix or suffix:
57
+
58
+ <function=example_function_name>{{`{{"example_name": "example_value"}}`}}</function>
59
+
60
+ Reminder:
61
+ - If looking for real time information use relevant functions before falling back to searching on internet
62
+ - Function calls MUST follow the specified format, start with <function= and end with </function>
63
+ - Required parameters MUST be specified
64
+ - Only call one function at a time
65
+ - Put the entire function call reply on one line
66
+ <|eot_id|>
67
+ {{.Input }}
68
+ <|start_header_id|>assistant<|end_header_id|>
69
+ chat: |
70
+ {{.Input }}
71
+ <|start_header_id|>assistant<|end_header_id|>
72
+ completion: |
73
+ {{.Input}}
74
+ ```
75
+
76
+ To run the model directly with LocalAI:
77
+ ```
78
+ local-ai run huggingface://fakezeta/Meta-Llama-3.1-8B-Instruct-ov-awq/model.yaml
79
+ ```
80
+
81
+ ## Model Information
82
+
83
+ The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.
84
+
85
+ **Model developer**: Meta
86
+
87
+ **Model Architecture:** Llama 3.1 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
88
+
89
+
90
+ <table>
91
+ <tr>
92
+ <td>
93
+ </td>
94
+ <td><strong>Training Data</strong>
95
+ </td>
96
+ <td><strong>Params</strong>
97
+ </td>
98
+ <td><strong>Input modalities</strong>
99
+ </td>
100
+ <td><strong>Output modalities</strong>
101
+ </td>
102
+ <td><strong>Context length</strong>
103
+ </td>
104
+ <td><strong>GQA</strong>
105
+ </td>
106
+ <td><strong>Token count</strong>
107
+ </td>
108
+ <td><strong>Knowledge cutoff</strong>
109
+ </td>
110
+ </tr>
111
+ <tr>
112
+ <td rowspan="3" >Llama 3.1 (text only)
113
+ </td>
114
+ <td rowspan="3" >A new mix of publicly available online data.
115
+ </td>
116
+ <td>8B
117
+ </td>
118
+ <td>Multilingual Text
119
+ </td>
120
+ <td>Multilingual Text and code
121
+ </td>
122
+ <td>128k
123
+ </td>
124
+ <td>Yes
125
+ </td>
126
+ <td rowspan="3" >15T+
127
+ </td>
128
+ <td rowspan="3" >December 2023
129
+ </td>
130
+ </tr>
131
+ <tr>
132
+ <td>70B
133
+ </td>
134
+ <td>Multilingual Text
135
+ </td>
136
+ <td>Multilingual Text and code
137
+ </td>
138
+ <td>128k
139
+ </td>
140
+ <td>Yes
141
+ </td>
142
+ </tr>
143
+ <tr>
144
+ <td>405B
145
+ </td>
146
+ <td>Multilingual Text
147
+ </td>
148
+ <td>Multilingual Text and code
149
+ </td>
150
+ <td>128k
151
+ </td>
152
+ <td>Yes
153
+ </td>
154
+ </tr>
155
+ </table>
156
+
157
+
158
+ **Supported languages:** English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai.
159
+
160
+ **Llama 3.1 family of models**. Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability.
161
+
162
+ **Model Release Date:** July 23, 2024.
163
+
164
+ **Status:** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
165
+
166
+ **License:** A custom commercial license, the Llama 3.1 Community License, is available at: [https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE)
167
+
168
+ Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go [here](https://github.com/meta-llama/llama-recipes).
169
+
170
+
171
+ ## Intended Use
172
+
173
+ **Intended Use Cases** Llama 3.1 is intended for commercial and research use in multiple languages. Instruction tuned text only models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. The Llama 3.1 model collection also supports the ability to leverage the outputs of its models to improve other models including synthetic data generation and distillation. The Llama 3.1 Community License allows for these use cases.
174
+
175
+ **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3.1 Community License. Use in languages beyond those explicitly referenced as supported in this model card**.
176
+
177
+ **<span style="text-decoration:underline;">Note</span>: Llama 3.1 has been trained on a broader collection of languages than the 8 supported languages. Developers may fine-tune Llama 3.1 models for languages beyond the 8 supported languages provided they comply with the Llama 3.1 Community License and the Acceptable Use Policy and in such cases are responsible for ensuring that any uses of Llama 3.1 in additional languages is done in a safe and responsible manner.
178
+
179
+ ## How to use
180
+
181
+ This repository contains two versions of Meta-Llama-3.1-8B-Instruct, for use with transformers and with the original `llama` codebase.
182
+
183
+ ### Use with transformers
184
+
185
+ Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function.
186
+
187
+ Make sure to update your transformers installation via `pip install --upgrade transformers`.
188
+
189
+ ```python
190
+ import transformers
191
+ import torch
192
+
193
+ model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
194
+
195
+ pipeline = transformers.pipeline(
196
+ "text-generation",
197
+ model=model_id,
198
+ model_kwargs={"torch_dtype": torch.bfloat16},
199
+ device_map="auto",
200
+ )
201
+
202
+ messages = [
203
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
204
+ {"role": "user", "content": "Who are you?"},
205
+ ]
206
+
207
+ outputs = pipeline(
208
+ messages,
209
+ max_new_tokens=256,
210
+ )
211
+ print(outputs[0]["generated_text"][-1])
212
+ ```
213
+
214
+ Note: You can also find detailed recipes on how to use the model locally, with `torch.compile()`, assisted generations, quantised and more at [`huggingface-llama-recipes`](https://github.com/huggingface/huggingface-llama-recipes)
215
+
216
+ ### Tool use with transformers
217
+
218
+ LLaMA-3.1 supports multiple tool use formats. You can see a full guide to prompt formatting [here](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/).
219
+
220
+ Tool use is also supported through [chat templates](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling) in Transformers.
221
+ Here is a quick example showing a single simple tool:
222
+
223
+ ```python
224
+ # First, define a tool
225
+ def get_current_temperature(location: str) -> float:
226
+ """
227
+ Get the current temperature at a location.
228
+
229
+ Args:
230
+ location: The location to get the temperature for, in the format "City, Country"
231
+ Returns:
232
+ The current temperature at the specified location in the specified units, as a float.
233
+ """
234
+ return 22. # A real function should probably actually get the temperature!
235
+
236
+ # Next, create a chat and apply the chat template
237
+ messages = [
238
+ {"role": "system", "content": "You are a bot that responds to weather queries."},
239
+ {"role": "user", "content": "Hey, what's the temperature in Paris right now?"}
240
+ ]
241
+
242
+ inputs = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True)
243
+ ```
244
+
245
+ You can then generate text from this input as normal. If the model generates a tool call, you should add it to the chat like so:
246
+
247
+ ```python
248
+ tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
249
+ messages.append({"role": "assistant", "tool_calls": [{"type": "function", "function": tool_call}]})
250
+ ```
251
+
252
+ and then call the tool and append the result, with the `tool` role, like so:
253
+
254
+ ```python
255
+ messages.append({"role": "tool", "name": "get_current_temperature", "content": "22.0"})
256
+ ```
257
+
258
+ After that, you can `generate()` again to let the model use the tool result in the chat. Note that this was a very brief introduction to tool calling - for more information,
259
+ see the [LLaMA prompt format docs](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/) and the Transformers [tool use documentation](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling).
260
+
261
+
262
+ ### Use with `llama`
263
+
264
+ Please, follow the instructions in the [repository](https://github.com/meta-llama/llama)
265
+
266
+ To download Original checkpoints, see the example command below leveraging `huggingface-cli`:
267
+
268
+ ```
269
+ huggingface-cli download meta-llama/Meta-Llama-3.1-8B-Instruct --include "original/*" --local-dir Meta-Llama-3.1-8B-Instruct
270
+ ```
271
+
272
+ ## Hardware and Software
273
+
274
+ **Training Factors** We used custom training libraries, Meta's custom built GPU cluster, and production infrastructure for pretraining. Fine-tuning, annotation, and evaluation were also performed on production infrastructure.
275
+
276
+ **Training utilized a cumulative of** 39.3M GPU hours of computation on H100-80GB (TDP of 700W) type hardware, per the table below. Training time is the total GPU time required for training each model and power consumption is the peak power capacity per GPU device used, adjusted for power usage efficiency.
277
+
278
+
279
+ **Training Greenhouse Gas Emissions** Estimated total location-based greenhouse gas emissions were **11,390** tons CO2eq for training. Since 2020, Meta has maintained net zero greenhouse gas emissions in its global operations and matched 100% of its electricity use with renewable energy, therefore the total market-based greenhouse gas emissions for training were 0 tons CO2eq.
280
+
281
+
282
+ <table>
283
+ <tr>
284
+ <td>
285
+ </td>
286
+ <td><strong>Training Time (GPU hours)</strong>
287
+ </td>
288
+ <td><strong>Training Power Consumption (W)</strong>
289
+ </td>
290
+ <td><strong>Training Location-Based Greenhouse Gas Emissions</strong>
291
+ <p>
292
+ <strong>(tons CO2eq)</strong>
293
+ </td>
294
+ <td><strong>Training Market-Based Greenhouse Gas Emissions</strong>
295
+ <p>
296
+ <strong>(tons CO2eq)</strong>
297
+ </td>
298
+ </tr>
299
+ <tr>
300
+ <td>Llama 3.1 8B
301
+ </td>
302
+ <td>1.46M
303
+ </td>
304
+ <td>700
305
+ </td>
306
+ <td>420
307
+ </td>
308
+ <td>0
309
+ </td>
310
+ </tr>
311
+ <tr>
312
+ <td>Llama 3.1 70B
313
+ </td>
314
+ <td>7.0M
315
+ </td>
316
+ <td>700
317
+ </td>
318
+ <td>2,040
319
+ </td>
320
+ <td>0
321
+ </td>
322
+ </tr>
323
+ <tr>
324
+ <td>Llama 3.1 405B
325
+ </td>
326
+ <td>30.84M
327
+ </td>
328
+ <td>700
329
+ </td>
330
+ <td>8,930
331
+ </td>
332
+ <td>0
333
+ </td>
334
+ </tr>
335
+ <tr>
336
+ <td>Total
337
+ </td>
338
+ <td>39.3M
339
+ <td>
340
+ <ul>
341
+
342
+ </ul>
343
+ </td>
344
+ <td>11,390
345
+ </td>
346
+ <td>0
347
+ </td>
348
+ </tr>
349
+ </table>
350
+
351
+
352
+
353
+ The methodology used to determine training energy use and greenhouse gas emissions can be found [here](https://arxiv.org/pdf/2204.05149). Since Meta is openly releasing these models, the training energy use and greenhouse gas emissions will not be incurred by others.
354
+
355
+
356
+ ## Training Data
357
+
358
+ **Overview:** Llama 3.1 was pretrained on ~15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 25M synthetically generated examples.
359
+
360
+ **Data Freshness:** The pretraining data has a cutoff of December 2023.
361
+
362
+
363
+ ## Benchmark scores
364
+
365
+ In this section, we report the results for Llama 3.1 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library.
366
+
367
+ ### Base pretrained models
368
+
369
+
370
+ <table>
371
+ <tr>
372
+ <td><strong>Category</strong>
373
+ </td>
374
+ <td><strong>Benchmark</strong>
375
+ </td>
376
+ <td><strong># Shots</strong>
377
+ </td>
378
+ <td><strong>Metric</strong>
379
+ </td>
380
+ <td><strong>Llama 3 8B</strong>
381
+ </td>
382
+ <td><strong>Llama 3.1 8B</strong>
383
+ </td>
384
+ <td><strong>Llama 3 70B</strong>
385
+ </td>
386
+ <td><strong>Llama 3.1 70B</strong>
387
+ </td>
388
+ <td><strong>Llama 3.1 405B</strong>
389
+ </td>
390
+ </tr>
391
+ <tr>
392
+ <td rowspan="7" >General
393
+ </td>
394
+ <td>MMLU
395
+ </td>
396
+ <td>5
397
+ </td>
398
+ <td>macro_avg/acc_char
399
+ </td>
400
+ <td>66.7
401
+ </td>
402
+ <td>66.7
403
+ </td>
404
+ <td>79.5
405
+ </td>
406
+ <td>79.3
407
+ </td>
408
+ <td>85.2
409
+ </td>
410
+ </tr>
411
+ <tr>
412
+ <td>MMLU-Pro (CoT)
413
+ </td>
414
+ <td>5
415
+ </td>
416
+ <td>macro_avg/acc_char
417
+ </td>
418
+ <td>36.2
419
+ </td>
420
+ <td>37.1
421
+ </td>
422
+ <td>55.0
423
+ </td>
424
+ <td>53.8
425
+ </td>
426
+ <td>61.6
427
+ </td>
428
+ </tr>
429
+ <tr>
430
+ <td>AGIEval English
431
+ </td>
432
+ <td>3-5
433
+ </td>
434
+ <td>average/acc_char
435
+ </td>
436
+ <td>47.1
437
+ </td>
438
+ <td>47.8
439
+ </td>
440
+ <td>63.0
441
+ </td>
442
+ <td>64.6
443
+ </td>
444
+ <td>71.6
445
+ </td>
446
+ </tr>
447
+ <tr>
448
+ <td>CommonSenseQA
449
+ </td>
450
+ <td>7
451
+ </td>
452
+ <td>acc_char
453
+ </td>
454
+ <td>72.6
455
+ </td>
456
+ <td>75.0
457
+ </td>
458
+ <td>83.8
459
+ </td>
460
+ <td>84.1
461
+ </td>
462
+ <td>85.8
463
+ </td>
464
+ </tr>
465
+ <tr>
466
+ <td>Winogrande
467
+ </td>
468
+ <td>5
469
+ </td>
470
+ <td>acc_char
471
+ </td>
472
+ <td>-
473
+ </td>
474
+ <td>60.5
475
+ </td>
476
+ <td>-
477
+ </td>
478
+ <td>83.3
479
+ </td>
480
+ <td>86.7
481
+ </td>
482
+ </tr>
483
+ <tr>
484
+ <td>BIG-Bench Hard (CoT)
485
+ </td>
486
+ <td>3
487
+ </td>
488
+ <td>average/em
489
+ </td>
490
+ <td>61.1
491
+ </td>
492
+ <td>64.2
493
+ </td>
494
+ <td>81.3
495
+ </td>
496
+ <td>81.6
497
+ </td>
498
+ <td>85.9
499
+ </td>
500
+ </tr>
501
+ <tr>
502
+ <td>ARC-Challenge
503
+ </td>
504
+ <td>25
505
+ </td>
506
+ <td>acc_char
507
+ </td>
508
+ <td>79.4
509
+ </td>
510
+ <td>79.7
511
+ </td>
512
+ <td>93.1
513
+ </td>
514
+ <td>92.9
515
+ </td>
516
+ <td>96.1
517
+ </td>
518
+ </tr>
519
+ <tr>
520
+ <td>Knowledge reasoning
521
+ </td>
522
+ <td>TriviaQA-Wiki
523
+ </td>
524
+ <td>5
525
+ </td>
526
+ <td>em
527
+ </td>
528
+ <td>78.5
529
+ </td>
530
+ <td>77.6
531
+ </td>
532
+ <td>89.7
533
+ </td>
534
+ <td>89.8
535
+ </td>
536
+ <td>91.8
537
+ </td>
538
+ </tr>
539
+ <tr>
540
+ <td rowspan="4" >Reading comprehension
541
+ </td>
542
+ <td>SQuAD
543
+ </td>
544
+ <td>1
545
+ </td>
546
+ <td>em
547
+ </td>
548
+ <td>76.4
549
+ </td>
550
+ <td>77.0
551
+ </td>
552
+ <td>85.6
553
+ </td>
554
+ <td>81.8
555
+ </td>
556
+ <td>89.3
557
+ </td>
558
+ </tr>
559
+ <tr>
560
+ <td>QuAC (F1)
561
+ </td>
562
+ <td>1
563
+ </td>
564
+ <td>f1
565
+ </td>
566
+ <td>44.4
567
+ </td>
568
+ <td>44.9
569
+ </td>
570
+ <td>51.1
571
+ </td>
572
+ <td>51.1
573
+ </td>
574
+ <td>53.6
575
+ </td>
576
+ </tr>
577
+ <tr>
578
+ <td>BoolQ
579
+ </td>
580
+ <td>0
581
+ </td>
582
+ <td>acc_char
583
+ </td>
584
+ <td>75.7
585
+ </td>
586
+ <td>75.0
587
+ </td>
588
+ <td>79.0
589
+ </td>
590
+ <td>79.4
591
+ </td>
592
+ <td>80.0
593
+ </td>
594
+ </tr>
595
+ <tr>
596
+ <td>DROP (F1)
597
+ </td>
598
+ <td>3
599
+ </td>
600
+ <td>f1
601
+ </td>
602
+ <td>58.4
603
+ </td>
604
+ <td>59.5
605
+ </td>
606
+ <td>79.7
607
+ </td>
608
+ <td>79.6
609
+ </td>
610
+ <td>84.8
611
+ </td>
612
+ </tr>
613
+ </table>
614
+
615
+
616
+
617
+ ### Instruction tuned models
618
+
619
+
620
+ <table>
621
+ <tr>
622
+ <td><strong>Category</strong>
623
+ </td>
624
+ <td><strong>Benchmark</strong>
625
+ </td>
626
+ <td><strong># Shots</strong>
627
+ </td>
628
+ <td><strong>Metric</strong>
629
+ </td>
630
+ <td><strong>Llama 3 8B Instruct</strong>
631
+ </td>
632
+ <td><strong>Llama 3.1 8B Instruct</strong>
633
+ </td>
634
+ <td><strong>Llama 3 70B Instruct</strong>
635
+ </td>
636
+ <td><strong>Llama 3.1 70B Instruct</strong>
637
+ </td>
638
+ <td><strong>Llama 3.1 405B Instruct</strong>
639
+ </td>
640
+ </tr>
641
+ <tr>
642
+ <td rowspan="4" >General
643
+ </td>
644
+ <td>MMLU
645
+ </td>
646
+ <td>5
647
+ </td>
648
+ <td>macro_avg/acc
649
+ </td>
650
+ <td>68.5
651
+ </td>
652
+ <td>69.4
653
+ </td>
654
+ <td>82.0
655
+ </td>
656
+ <td>83.6
657
+ </td>
658
+ <td>87.3
659
+ </td>
660
+ </tr>
661
+ <tr>
662
+ <td>MMLU (CoT)
663
+ </td>
664
+ <td>0
665
+ </td>
666
+ <td>macro_avg/acc
667
+ </td>
668
+ <td>65.3
669
+ </td>
670
+ <td>73.0
671
+ </td>
672
+ <td>80.9
673
+ </td>
674
+ <td>86.0
675
+ </td>
676
+ <td>88.6
677
+ </td>
678
+ </tr>
679
+ <tr>
680
+ <td>MMLU-Pro (CoT)
681
+ </td>
682
+ <td>5
683
+ </td>
684
+ <td>micro_avg/acc_char
685
+ </td>
686
+ <td>45.5
687
+ </td>
688
+ <td>48.3
689
+ </td>
690
+ <td>63.4
691
+ </td>
692
+ <td>66.4
693
+ </td>
694
+ <td>73.3
695
+ </td>
696
+ </tr>
697
+ <tr>
698
+ <td>IFEval
699
+ </td>
700
+ <td>
701
+ </td>
702
+ <td>
703
+ </td>
704
+ <td>76.8
705
+ </td>
706
+ <td>80.4
707
+ </td>
708
+ <td>82.9
709
+ </td>
710
+ <td>87.5
711
+ </td>
712
+ <td>88.6
713
+ </td>
714
+ </tr>
715
+ <tr>
716
+ <td rowspan="2" >Reasoning
717
+ </td>
718
+ <td>ARC-C
719
+ </td>
720
+ <td>0
721
+ </td>
722
+ <td>acc
723
+ </td>
724
+ <td>82.4
725
+ </td>
726
+ <td>83.4
727
+ </td>
728
+ <td>94.4
729
+ </td>
730
+ <td>94.8
731
+ </td>
732
+ <td>96.9
733
+ </td>
734
+ </tr>
735
+ <tr>
736
+ <td>GPQA
737
+ </td>
738
+ <td>0
739
+ </td>
740
+ <td>em
741
+ </td>
742
+ <td>34.6
743
+ </td>
744
+ <td>30.4
745
+ </td>
746
+ <td>39.5
747
+ </td>
748
+ <td>41.7
749
+ </td>
750
+ <td>50.7
751
+ </td>
752
+ </tr>
753
+ <tr>
754
+ <td rowspan="4" >Code
755
+ </td>
756
+ <td>HumanEval
757
+ </td>
758
+ <td>0
759
+ </td>
760
+ <td>pass@1
761
+ </td>
762
+ <td>60.4
763
+ </td>
764
+ <td>72.6
765
+ </td>
766
+ <td>81.7
767
+ </td>
768
+ <td>80.5
769
+ </td>
770
+ <td>89.0
771
+ </td>
772
+ </tr>
773
+ <tr>
774
+ <td>MBPP ++ base version
775
+ </td>
776
+ <td>0
777
+ </td>
778
+ <td>pass@1
779
+ </td>
780
+ <td>70.6
781
+ </td>
782
+ <td>72.8
783
+ </td>
784
+ <td>82.5
785
+ </td>
786
+ <td>86.0
787
+ </td>
788
+ <td>88.6
789
+ </td>
790
+ </tr>
791
+ <tr>
792
+ <td>Multipl-E HumanEval
793
+ </td>
794
+ <td>0
795
+ </td>
796
+ <td>pass@1
797
+ </td>
798
+ <td>-
799
+ </td>
800
+ <td>50.8
801
+ </td>
802
+ <td>-
803
+ </td>
804
+ <td>65.5
805
+ </td>
806
+ <td>75.2
807
+ </td>
808
+ </tr>
809
+ <tr>
810
+ <td>Multipl-E MBPP
811
+ </td>
812
+ <td>0
813
+ </td>
814
+ <td>pass@1
815
+ </td>
816
+ <td>-
817
+ </td>
818
+ <td>52.4
819
+ </td>
820
+ <td>-
821
+ </td>
822
+ <td>62.0
823
+ </td>
824
+ <td>65.7
825
+ </td>
826
+ </tr>
827
+ <tr>
828
+ <td rowspan="2" >Math
829
+ </td>
830
+ <td>GSM-8K (CoT)
831
+ </td>
832
+ <td>8
833
+ </td>
834
+ <td>em_maj1@1
835
+ </td>
836
+ <td>80.6
837
+ </td>
838
+ <td>84.5
839
+ </td>
840
+ <td>93.0
841
+ </td>
842
+ <td>95.1
843
+ </td>
844
+ <td>96.8
845
+ </td>
846
+ </tr>
847
+ <tr>
848
+ <td>MATH (CoT)
849
+ </td>
850
+ <td>0
851
+ </td>
852
+ <td>final_em
853
+ </td>
854
+ <td>29.1
855
+ </td>
856
+ <td>51.9
857
+ </td>
858
+ <td>51.0
859
+ </td>
860
+ <td>68.0
861
+ </td>
862
+ <td>73.8
863
+ </td>
864
+ </tr>
865
+ <tr>
866
+ <td rowspan="4" >Tool Use
867
+ </td>
868
+ <td>API-Bank
869
+ </td>
870
+ <td>0
871
+ </td>
872
+ <td>acc
873
+ </td>
874
+ <td>48.3
875
+ </td>
876
+ <td>82.6
877
+ </td>
878
+ <td>85.1
879
+ </td>
880
+ <td>90.0
881
+ </td>
882
+ <td>92.0
883
+ </td>
884
+ </tr>
885
+ <tr>
886
+ <td>BFCL
887
+ </td>
888
+ <td>0
889
+ </td>
890
+ <td>acc
891
+ </td>
892
+ <td>60.3
893
+ </td>
894
+ <td>76.1
895
+ </td>
896
+ <td>83.0
897
+ </td>
898
+ <td>84.8
899
+ </td>
900
+ <td>88.5
901
+ </td>
902
+ </tr>
903
+ <tr>
904
+ <td>Gorilla Benchmark API Bench
905
+ </td>
906
+ <td>0
907
+ </td>
908
+ <td>acc
909
+ </td>
910
+ <td>1.7
911
+ </td>
912
+ <td>8.2
913
+ </td>
914
+ <td>14.7
915
+ </td>
916
+ <td>29.7
917
+ </td>
918
+ <td>35.3
919
+ </td>
920
+ </tr>
921
+ <tr>
922
+ <td>Nexus (0-shot)
923
+ </td>
924
+ <td>0
925
+ </td>
926
+ <td>macro_avg/acc
927
+ </td>
928
+ <td>18.1
929
+ </td>
930
+ <td>38.5
931
+ </td>
932
+ <td>47.8
933
+ </td>
934
+ <td>56.7
935
+ </td>
936
+ <td>58.7
937
+ </td>
938
+ </tr>
939
+ <tr>
940
+ <td>Multilingual
941
+ </td>
942
+ <td>Multilingual MGSM (CoT)
943
+ </td>
944
+ <td>0
945
+ </td>
946
+ <td>em
947
+ </td>
948
+ <td>-
949
+ </td>
950
+ <td>68.9
951
+ </td>
952
+ <td>-
953
+ </td>
954
+ <td>86.9
955
+ </td>
956
+ <td>91.6
957
+ </td>
958
+ </tr>
959
+ </table>
960
+
961
+ #### Multilingual benchmarks
962
+
963
+ <table>
964
+ <tr>
965
+ <td><strong>Category</strong>
966
+ </td>
967
+ <td><strong>Benchmark</strong>
968
+ </td>
969
+ <td><strong>Language</strong>
970
+ </td>
971
+ <td><strong>Llama 3.1 8B</strong>
972
+ </td>
973
+ <td><strong>Llama 3.1 70B</strong>
974
+ </td>
975
+ <td><strong>Llama 3.1 405B</strong>
976
+ </td>
977
+ </tr>
978
+ <tr>
979
+ <td rowspan="9" ><strong>General</strong>
980
+ </td>
981
+ <td rowspan="9" ><strong>MMLU (5-shot, macro_avg/acc)</strong>
982
+ </td>
983
+ <td>Portuguese
984
+ </td>
985
+ <td>62.12
986
+ </td>
987
+ <td>80.13
988
+ </td>
989
+ <td>84.95
990
+ </td>
991
+ </tr>
992
+ <tr>
993
+ <td>Spanish
994
+ </td>
995
+ <td>62.45
996
+ </td>
997
+ <td>80.05
998
+ </td>
999
+ <td>85.08
1000
+ </td>
1001
+ </tr>
1002
+ <tr>
1003
+ <td>Italian
1004
+ </td>
1005
+ <td>61.63
1006
+ </td>
1007
+ <td>80.4
1008
+ </td>
1009
+ <td>85.04
1010
+ </td>
1011
+ </tr>
1012
+ <tr>
1013
+ <td>German
1014
+ </td>
1015
+ <td>60.59
1016
+ </td>
1017
+ <td>79.27
1018
+ </td>
1019
+ <td>84.36
1020
+ </td>
1021
+ </tr>
1022
+ <tr>
1023
+ <td>French
1024
+ </td>
1025
+ <td>62.34
1026
+ </td>
1027
+ <td>79.82
1028
+ </td>
1029
+ <td>84.66
1030
+ </td>
1031
+ </tr>
1032
+ <tr>
1033
+ <td>Hindi
1034
+ </td>
1035
+ <td>50.88
1036
+ </td>
1037
+ <td>74.52
1038
+ </td>
1039
+ <td>80.31
1040
+ </td>
1041
+ </tr>
1042
+ <tr>
1043
+ <td>Thai
1044
+ </td>
1045
+ <td>50.32
1046
+ </td>
1047
+ <td>72.95
1048
+ </td>
1049
+ <td>78.21
1050
+ </td>
1051
+ </tr>
1052
+ </table>
1053
+
1054
+
1055
+
1056
+ ## Responsibility & Safety
1057
+
1058
+ As part of our Responsible release approach, we followed a three-pronged strategy to managing trust & safety risks:
1059
+
1060
+
1061
+
1062
+ * Enable developers to deploy helpful, safe and flexible experiences for their target audience and for the use cases supported by Llama.
1063
+ * Protect developers against adversarial users aiming to exploit Llama capabilities to potentially cause harm.
1064
+ * Provide protections for the community to help prevent the misuse of our models.
1065
+
1066
+
1067
+ ### Responsible deployment
1068
+
1069
+ Llama is a foundational technology designed to be used in a variety of use cases, examples on how Meta’s Llama models have been responsibly deployed can be found in our [Community Stories webpage](https://llama.meta.com/community-stories/). Our approach is to build the most helpful models enabling the world to benefit from the technology power, by aligning our model safety for the generic use cases addressing a standard set of harms. Developers are then in the driver seat to tailor safety for their use case, defining their own policy and deploying the models with the necessary safeguards in their Llama systems. Llama 3.1 was developed following the best practices outlined in our Responsible Use Guide, you can refer to the [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to learn more.
1070
+
1071
+
1072
+ #### Llama 3.1 instruct
1073
+
1074
+ Our main objectives for conducting safety fine-tuning are to provide the research community with a valuable resource for studying the robustness of safety fine-tuning, as well as to offer developers a readily available, safe, and powerful model for various applications to reduce the developer workload to deploy safe AI systems. For more details on the safety mitigations implemented please read the Llama 3 paper.
1075
+
1076
+ **Fine-tuning data**
1077
+
1078
+ We employ a multi-faceted approach to data collection, combining human-generated data from our vendors with synthetic data to mitigate potential safety risks. We’ve developed many large language model (LLM)-based classifiers that enable us to thoughtfully select high-quality prompts and responses, enhancing data quality control.
1079
+
1080
+ **Refusals and Tone**
1081
+
1082
+ Building on the work we started with Llama 3, we put a great emphasis on model refusals to benign prompts as well as refusal tone. We included both borderline and adversarial prompts in our safety data strategy, and modified our safety data responses to follow tone guidelines.
1083
+
1084
+
1085
+ #### Llama 3.1 systems
1086
+
1087
+ **Large language models, including Llama 3.1, are not designed to be deployed in isolation but instead should be deployed as part of an overall AI system with additional safety guardrails as required.** Developers are expected to deploy system safeguards when building agentic systems. Safeguards are key to achieve the right helpfulness-safety alignment as well as mitigating safety and security risks inherent to the system and any integration of the model or system with external tools.
1088
+
1089
+ As part of our responsible release approach, we provide the community with [safeguards](https://llama.meta.com/trust-and-safety/) that developers should deploy with Llama models or other LLMs, including Llama Guard 3, Prompt Guard and Code Shield. All our [reference implementations](https://github.com/meta-llama/llama-agentic-system) demos contain these safeguards by default so developers can benefit from system-level safety out-of-the-box.
1090
+
1091
+
1092
+ #### New capabilities
1093
+
1094
+ Note that this release introduces new capabilities, including a longer context window, multilingual inputs and outputs and possible integrations by developers with third party tools. Building with these new capabilities requires specific considerations in addition to the best practices that generally apply across all Generative AI use cases.
1095
+
1096
+ **Tool-use**: Just like in standard software development, developers are responsible for the integration of the LLM with the tools and services of their choice. They should define a clear policy for their use case and assess the integrity of the third party services they use to be aware of the safety and security limitations when using this capability. Refer to the Responsible Use Guide for best practices on the safe deployment of the third party safeguards.
1097
+
1098
+ **Multilinguality**: Llama 3.1 supports 7 languages in addition to English: French, German, Hindi, Italian, Portuguese, Spanish, and Thai. Llama may be able to output text in other languages than those that meet performance thresholds for safety and helpfulness. We strongly discourage developers from using this model to converse in non-supported languages without implementing finetuning and system controls in alignment with their policies and the best practices shared in the Responsible Use Guide.
1099
+
1100
+
1101
+ ### Evaluations
1102
+
1103
+ We evaluated Llama models for common use cases as well as specific capabilities. Common use cases evaluations measure safety risks of systems for most commonly built applications including chat bot, coding assistant, tool calls. We built dedicated, adversarial evaluation datasets and evaluated systems composed of Llama models and Llama Guard 3 to filter input prompt and output response. It is important to evaluate applications in context, and we recommend building dedicated evaluation dataset for your use case. Prompt Guard and Code Shield are also available if relevant to the application.
1104
+
1105
+ Capability evaluations measure vulnerabilities of Llama models inherent to specific capabilities, for which were crafted dedicated benchmarks including long context, multilingual, tools calls, coding or memorization.
1106
+
1107
+ **Red teaming**
1108
+
1109
+ For both scenarios, we conducted recurring red teaming exercises with the goal of discovering risks via adversarial prompting and we used the learnings to improve our benchmarks and safety tuning datasets.
1110
+
1111
+ We partnered early with subject-matter experts in critical risk areas to understand the nature of these real-world harms and how such models may lead to unintended harm for society. Based on these conversations, we derived a set of adversarial goals for the red team to attempt to achieve, such as extracting harmful information or reprogramming the model to act in a potentially harmful capacity. The red team consisted of experts in cybersecurity, adversarial machine learning, responsible AI, and integrity in addition to multilingual content specialists with background in integrity issues in specific geographic markets.
1112
+
1113
+
1114
+ ### Critical and other risks
1115
+
1116
+ We specifically focused our efforts on mitigating the following critical risk areas:
1117
+
1118
+ **1- CBRNE (Chemical, Biological, Radiological, Nuclear, and Explosive materials) helpfulness**
1119
+
1120
+ To assess risks related to proliferation of chemical and biological weapons, we performed uplift testing designed to assess whether use of Llama 3.1 models could meaningfully increase the capabilities of malicious actors to plan or carry out attacks using these types of weapons.
1121
+
1122
+
1123
+ **2. Child Safety**
1124
+
1125
+ Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors including the additional languages Llama 3 is trained on. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.
1126
+
1127
+ **3. Cyber attack enablement**
1128
+
1129
+ Our cyber attack uplift study investigated whether LLMs can enhance human capabilities in hacking tasks, both in terms of skill level and speed.
1130
+
1131
+ Our attack automation study focused on evaluating the capabilities of LLMs when used as autonomous agents in cyber offensive operations, specifically in the context of ransomware attacks. This evaluation was distinct from previous studies that considered LLMs as interactive assistants. The primary objective was to assess whether these models could effectively function as independent agents in executing complex cyber-attacks without human intervention.
1132
+
1133
+ Our study of Llama-3.1-405B’s social engineering uplift for cyber attackers was conducted to assess the effectiveness of AI models in aiding cyber threat actors in spear phishing campaigns. Please read our Llama 3.1 Cyber security whitepaper to learn more.
1134
+
1135
+
1136
+ ### Community
1137
+
1138
+ Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership on AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama).
1139
+
1140
+ We also set up the [Llama Impact Grants](https://llama.meta.com/llama-impact-grants/) program to identify and support the most compelling applications of Meta’s Llama model for societal benefit across three categories: education, climate and open innovation. The 20 finalists from the hundreds of applications can be found [here](https://llama.meta.com/llama-impact-grants/#finalists).
1141
+
1142
+ Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community.
1143
+
1144
+
1145
+ ## Ethical Considerations and Limitations
1146
+
1147
+ The core values of Llama 3.1 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3.1 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.
1148
+
1149
+ But Llama 3.1 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3.1’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3.1 models, developers should perform safety testing and tuning tailored to their specific applications of the model. Please refer to available resources including our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide), [Trust and Safety](https://llama.meta.com/trust-and-safety/) solutions, and other [resources](https://llama.meta.com/docs/get-started/) to learn more about responsible development.
.ipynb_checkpoints/model-checkpoint.yaml ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: llama-3.1
2
+ backend: transformers
3
+ parameters:
4
+ model: fakezeta/Meta-Llama-3.1-8B-Instruct-ov-awq
5
+ context_size: 8192
6
+ type: OVModelForCausalLM
7
+ template:
8
+ chat_message: |
9
+ <|start_header_id|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}<|end_header_id|>
10
+
11
+ {{ if .FunctionCall -}}
12
+ Function call:
13
+ {{ else if eq .RoleName "tool" -}}
14
+ Function response:
15
+ {{ end -}}
16
+ {{ if .Content -}}
17
+ {{.Content -}}
18
+ {{ else if .FunctionCall -}}
19
+ {{ toJson .FunctionCall -}}
20
+ {{ end -}}
21
+ <|eot_id|>
22
+ function: |
23
+ <|start_header_id|>system<|end_header_id|>
24
+ You have access to the following functions:
25
+ {{range .Functions}}
26
+ Use the function '{{.Name}}' to '{{.Description}}'
27
+ {{toJson .Parameters}}
28
+ {{end}}
29
+
30
+ Think very carefully before calling functions.
31
+ If a you choose to call a function ONLY reply in the following format with no prefix or suffix:
32
+
33
+ <function=example_function_name>{{`{{"example_name": "example_value"}}`}}</function>
34
+
35
+ Reminder:
36
+ - If looking for real time information use relevant functions before falling back to searching on internet
37
+ - Function calls MUST follow the specified format, start with <function= and end with </function>
38
+ - Required parameters MUST be specified
39
+ - Only call one function at a time
40
+ - Put the entire function call reply on one line
41
+ <|eot_id|>
42
+ {{.Input }}
43
+ <|start_header_id|>assistant<|end_header_id|>
44
+ chat: |
45
+ {{.Input }}
46
+ <|start_header_id|>assistant<|end_header_id|>
47
+ completion: |
48
+ {{.Input}}
49
+
README.md ADDED
@@ -0,0 +1,1149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - de
5
+ - fr
6
+ - it
7
+ - pt
8
+ - hi
9
+ - es
10
+ - th
11
+ license: llama3.1
12
+ pipeline_tag: text-generation
13
+ tags:
14
+ - facebook
15
+ - meta
16
+ - pytorch
17
+ - llama
18
+ - llama-3
19
+ ---
20
+
21
+
22
+ # OpenVINO IR model with int4 awq quantization with scale estimation on wikitext2 dataset
23
+
24
+ Model definition for LocalAI:
25
+ ```yaml
26
+ name: llama-3.1
27
+ backend: transformers
28
+ parameters:
29
+ model: fakezeta/Meta-Llama-3.1-8B-Instruct-ov-awq
30
+ context_size: 8192
31
+ type: OVModelForCausalLM
32
+ template:
33
+ chat_message: |
34
+ <|start_header_id|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}<|end_header_id|>
35
+
36
+ {{ if .FunctionCall -}}
37
+ Function call:
38
+ {{ else if eq .RoleName "tool" -}}
39
+ Function response:
40
+ {{ end -}}
41
+ {{ if .Content -}}
42
+ {{.Content -}}
43
+ {{ else if .FunctionCall -}}
44
+ {{ toJson .FunctionCall -}}
45
+ {{ end -}}
46
+ <|eot_id|>
47
+ function: |
48
+ <|start_header_id|>system<|end_header_id|>
49
+ You have access to the following functions:
50
+ {{range .Functions}}
51
+ Use the function '{{.Name}}' to '{{.Description}}'
52
+ {{toJson .Parameters}}
53
+ {{end}}
54
+
55
+ Think very carefully before calling functions.
56
+ If a you choose to call a function ONLY reply in the following format with no prefix or suffix:
57
+
58
+ <function=example_function_name>{{`{{"example_name": "example_value"}}`}}</function>
59
+
60
+ Reminder:
61
+ - If looking for real time information use relevant functions before falling back to searching on internet
62
+ - Function calls MUST follow the specified format, start with <function= and end with </function>
63
+ - Required parameters MUST be specified
64
+ - Only call one function at a time
65
+ - Put the entire function call reply on one line
66
+ <|eot_id|>
67
+ {{.Input }}
68
+ <|start_header_id|>assistant<|end_header_id|>
69
+ chat: |
70
+ {{.Input }}
71
+ <|start_header_id|>assistant<|end_header_id|>
72
+ completion: |
73
+ {{.Input}}
74
+ ```
75
+
76
+ To run the model directly with LocalAI:
77
+ ```
78
+ local-ai run huggingface://fakezeta/Meta-Llama-3.1-8B-Instruct-ov-awq/model.yaml
79
+ ```
80
+
81
+ ## Model Information
82
+
83
+ The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.
84
+
85
+ **Model developer**: Meta
86
+
87
+ **Model Architecture:** Llama 3.1 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
88
+
89
+
90
+ <table>
91
+ <tr>
92
+ <td>
93
+ </td>
94
+ <td><strong>Training Data</strong>
95
+ </td>
96
+ <td><strong>Params</strong>
97
+ </td>
98
+ <td><strong>Input modalities</strong>
99
+ </td>
100
+ <td><strong>Output modalities</strong>
101
+ </td>
102
+ <td><strong>Context length</strong>
103
+ </td>
104
+ <td><strong>GQA</strong>
105
+ </td>
106
+ <td><strong>Token count</strong>
107
+ </td>
108
+ <td><strong>Knowledge cutoff</strong>
109
+ </td>
110
+ </tr>
111
+ <tr>
112
+ <td rowspan="3" >Llama 3.1 (text only)
113
+ </td>
114
+ <td rowspan="3" >A new mix of publicly available online data.
115
+ </td>
116
+ <td>8B
117
+ </td>
118
+ <td>Multilingual Text
119
+ </td>
120
+ <td>Multilingual Text and code
121
+ </td>
122
+ <td>128k
123
+ </td>
124
+ <td>Yes
125
+ </td>
126
+ <td rowspan="3" >15T+
127
+ </td>
128
+ <td rowspan="3" >December 2023
129
+ </td>
130
+ </tr>
131
+ <tr>
132
+ <td>70B
133
+ </td>
134
+ <td>Multilingual Text
135
+ </td>
136
+ <td>Multilingual Text and code
137
+ </td>
138
+ <td>128k
139
+ </td>
140
+ <td>Yes
141
+ </td>
142
+ </tr>
143
+ <tr>
144
+ <td>405B
145
+ </td>
146
+ <td>Multilingual Text
147
+ </td>
148
+ <td>Multilingual Text and code
149
+ </td>
150
+ <td>128k
151
+ </td>
152
+ <td>Yes
153
+ </td>
154
+ </tr>
155
+ </table>
156
+
157
+
158
+ **Supported languages:** English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai.
159
+
160
+ **Llama 3.1 family of models**. Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability.
161
+
162
+ **Model Release Date:** July 23, 2024.
163
+
164
+ **Status:** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
165
+
166
+ **License:** A custom commercial license, the Llama 3.1 Community License, is available at: [https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE)
167
+
168
+ Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go [here](https://github.com/meta-llama/llama-recipes).
169
+
170
+
171
+ ## Intended Use
172
+
173
+ **Intended Use Cases** Llama 3.1 is intended for commercial and research use in multiple languages. Instruction tuned text only models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. The Llama 3.1 model collection also supports the ability to leverage the outputs of its models to improve other models including synthetic data generation and distillation. The Llama 3.1 Community License allows for these use cases.
174
+
175
+ **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3.1 Community License. Use in languages beyond those explicitly referenced as supported in this model card**.
176
+
177
+ **<span style="text-decoration:underline;">Note</span>: Llama 3.1 has been trained on a broader collection of languages than the 8 supported languages. Developers may fine-tune Llama 3.1 models for languages beyond the 8 supported languages provided they comply with the Llama 3.1 Community License and the Acceptable Use Policy and in such cases are responsible for ensuring that any uses of Llama 3.1 in additional languages is done in a safe and responsible manner.
178
+
179
+ ## How to use
180
+
181
+ This repository contains two versions of Meta-Llama-3.1-8B-Instruct, for use with transformers and with the original `llama` codebase.
182
+
183
+ ### Use with transformers
184
+
185
+ Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function.
186
+
187
+ Make sure to update your transformers installation via `pip install --upgrade transformers`.
188
+
189
+ ```python
190
+ import transformers
191
+ import torch
192
+
193
+ model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
194
+
195
+ pipeline = transformers.pipeline(
196
+ "text-generation",
197
+ model=model_id,
198
+ model_kwargs={"torch_dtype": torch.bfloat16},
199
+ device_map="auto",
200
+ )
201
+
202
+ messages = [
203
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
204
+ {"role": "user", "content": "Who are you?"},
205
+ ]
206
+
207
+ outputs = pipeline(
208
+ messages,
209
+ max_new_tokens=256,
210
+ )
211
+ print(outputs[0]["generated_text"][-1])
212
+ ```
213
+
214
+ Note: You can also find detailed recipes on how to use the model locally, with `torch.compile()`, assisted generations, quantised and more at [`huggingface-llama-recipes`](https://github.com/huggingface/huggingface-llama-recipes)
215
+
216
+ ### Tool use with transformers
217
+
218
+ LLaMA-3.1 supports multiple tool use formats. You can see a full guide to prompt formatting [here](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/).
219
+
220
+ Tool use is also supported through [chat templates](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling) in Transformers.
221
+ Here is a quick example showing a single simple tool:
222
+
223
+ ```python
224
+ # First, define a tool
225
+ def get_current_temperature(location: str) -> float:
226
+ """
227
+ Get the current temperature at a location.
228
+
229
+ Args:
230
+ location: The location to get the temperature for, in the format "City, Country"
231
+ Returns:
232
+ The current temperature at the specified location in the specified units, as a float.
233
+ """
234
+ return 22. # A real function should probably actually get the temperature!
235
+
236
+ # Next, create a chat and apply the chat template
237
+ messages = [
238
+ {"role": "system", "content": "You are a bot that responds to weather queries."},
239
+ {"role": "user", "content": "Hey, what's the temperature in Paris right now?"}
240
+ ]
241
+
242
+ inputs = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True)
243
+ ```
244
+
245
+ You can then generate text from this input as normal. If the model generates a tool call, you should add it to the chat like so:
246
+
247
+ ```python
248
+ tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
249
+ messages.append({"role": "assistant", "tool_calls": [{"type": "function", "function": tool_call}]})
250
+ ```
251
+
252
+ and then call the tool and append the result, with the `tool` role, like so:
253
+
254
+ ```python
255
+ messages.append({"role": "tool", "name": "get_current_temperature", "content": "22.0"})
256
+ ```
257
+
258
+ After that, you can `generate()` again to let the model use the tool result in the chat. Note that this was a very brief introduction to tool calling - for more information,
259
+ see the [LLaMA prompt format docs](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/) and the Transformers [tool use documentation](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling).
260
+
261
+
262
+ ### Use with `llama`
263
+
264
+ Please, follow the instructions in the [repository](https://github.com/meta-llama/llama)
265
+
266
+ To download Original checkpoints, see the example command below leveraging `huggingface-cli`:
267
+
268
+ ```
269
+ huggingface-cli download meta-llama/Meta-Llama-3.1-8B-Instruct --include "original/*" --local-dir Meta-Llama-3.1-8B-Instruct
270
+ ```
271
+
272
+ ## Hardware and Software
273
+
274
+ **Training Factors** We used custom training libraries, Meta's custom built GPU cluster, and production infrastructure for pretraining. Fine-tuning, annotation, and evaluation were also performed on production infrastructure.
275
+
276
+ **Training utilized a cumulative of** 39.3M GPU hours of computation on H100-80GB (TDP of 700W) type hardware, per the table below. Training time is the total GPU time required for training each model and power consumption is the peak power capacity per GPU device used, adjusted for power usage efficiency.
277
+
278
+
279
+ **Training Greenhouse Gas Emissions** Estimated total location-based greenhouse gas emissions were **11,390** tons CO2eq for training. Since 2020, Meta has maintained net zero greenhouse gas emissions in its global operations and matched 100% of its electricity use with renewable energy, therefore the total market-based greenhouse gas emissions for training were 0 tons CO2eq.
280
+
281
+
282
+ <table>
283
+ <tr>
284
+ <td>
285
+ </td>
286
+ <td><strong>Training Time (GPU hours)</strong>
287
+ </td>
288
+ <td><strong>Training Power Consumption (W)</strong>
289
+ </td>
290
+ <td><strong>Training Location-Based Greenhouse Gas Emissions</strong>
291
+ <p>
292
+ <strong>(tons CO2eq)</strong>
293
+ </td>
294
+ <td><strong>Training Market-Based Greenhouse Gas Emissions</strong>
295
+ <p>
296
+ <strong>(tons CO2eq)</strong>
297
+ </td>
298
+ </tr>
299
+ <tr>
300
+ <td>Llama 3.1 8B
301
+ </td>
302
+ <td>1.46M
303
+ </td>
304
+ <td>700
305
+ </td>
306
+ <td>420
307
+ </td>
308
+ <td>0
309
+ </td>
310
+ </tr>
311
+ <tr>
312
+ <td>Llama 3.1 70B
313
+ </td>
314
+ <td>7.0M
315
+ </td>
316
+ <td>700
317
+ </td>
318
+ <td>2,040
319
+ </td>
320
+ <td>0
321
+ </td>
322
+ </tr>
323
+ <tr>
324
+ <td>Llama 3.1 405B
325
+ </td>
326
+ <td>30.84M
327
+ </td>
328
+ <td>700
329
+ </td>
330
+ <td>8,930
331
+ </td>
332
+ <td>0
333
+ </td>
334
+ </tr>
335
+ <tr>
336
+ <td>Total
337
+ </td>
338
+ <td>39.3M
339
+ <td>
340
+ <ul>
341
+
342
+ </ul>
343
+ </td>
344
+ <td>11,390
345
+ </td>
346
+ <td>0
347
+ </td>
348
+ </tr>
349
+ </table>
350
+
351
+
352
+
353
+ The methodology used to determine training energy use and greenhouse gas emissions can be found [here](https://arxiv.org/pdf/2204.05149). Since Meta is openly releasing these models, the training energy use and greenhouse gas emissions will not be incurred by others.
354
+
355
+
356
+ ## Training Data
357
+
358
+ **Overview:** Llama 3.1 was pretrained on ~15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 25M synthetically generated examples.
359
+
360
+ **Data Freshness:** The pretraining data has a cutoff of December 2023.
361
+
362
+
363
+ ## Benchmark scores
364
+
365
+ In this section, we report the results for Llama 3.1 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library.
366
+
367
+ ### Base pretrained models
368
+
369
+
370
+ <table>
371
+ <tr>
372
+ <td><strong>Category</strong>
373
+ </td>
374
+ <td><strong>Benchmark</strong>
375
+ </td>
376
+ <td><strong># Shots</strong>
377
+ </td>
378
+ <td><strong>Metric</strong>
379
+ </td>
380
+ <td><strong>Llama 3 8B</strong>
381
+ </td>
382
+ <td><strong>Llama 3.1 8B</strong>
383
+ </td>
384
+ <td><strong>Llama 3 70B</strong>
385
+ </td>
386
+ <td><strong>Llama 3.1 70B</strong>
387
+ </td>
388
+ <td><strong>Llama 3.1 405B</strong>
389
+ </td>
390
+ </tr>
391
+ <tr>
392
+ <td rowspan="7" >General
393
+ </td>
394
+ <td>MMLU
395
+ </td>
396
+ <td>5
397
+ </td>
398
+ <td>macro_avg/acc_char
399
+ </td>
400
+ <td>66.7
401
+ </td>
402
+ <td>66.7
403
+ </td>
404
+ <td>79.5
405
+ </td>
406
+ <td>79.3
407
+ </td>
408
+ <td>85.2
409
+ </td>
410
+ </tr>
411
+ <tr>
412
+ <td>MMLU-Pro (CoT)
413
+ </td>
414
+ <td>5
415
+ </td>
416
+ <td>macro_avg/acc_char
417
+ </td>
418
+ <td>36.2
419
+ </td>
420
+ <td>37.1
421
+ </td>
422
+ <td>55.0
423
+ </td>
424
+ <td>53.8
425
+ </td>
426
+ <td>61.6
427
+ </td>
428
+ </tr>
429
+ <tr>
430
+ <td>AGIEval English
431
+ </td>
432
+ <td>3-5
433
+ </td>
434
+ <td>average/acc_char
435
+ </td>
436
+ <td>47.1
437
+ </td>
438
+ <td>47.8
439
+ </td>
440
+ <td>63.0
441
+ </td>
442
+ <td>64.6
443
+ </td>
444
+ <td>71.6
445
+ </td>
446
+ </tr>
447
+ <tr>
448
+ <td>CommonSenseQA
449
+ </td>
450
+ <td>7
451
+ </td>
452
+ <td>acc_char
453
+ </td>
454
+ <td>72.6
455
+ </td>
456
+ <td>75.0
457
+ </td>
458
+ <td>83.8
459
+ </td>
460
+ <td>84.1
461
+ </td>
462
+ <td>85.8
463
+ </td>
464
+ </tr>
465
+ <tr>
466
+ <td>Winogrande
467
+ </td>
468
+ <td>5
469
+ </td>
470
+ <td>acc_char
471
+ </td>
472
+ <td>-
473
+ </td>
474
+ <td>60.5
475
+ </td>
476
+ <td>-
477
+ </td>
478
+ <td>83.3
479
+ </td>
480
+ <td>86.7
481
+ </td>
482
+ </tr>
483
+ <tr>
484
+ <td>BIG-Bench Hard (CoT)
485
+ </td>
486
+ <td>3
487
+ </td>
488
+ <td>average/em
489
+ </td>
490
+ <td>61.1
491
+ </td>
492
+ <td>64.2
493
+ </td>
494
+ <td>81.3
495
+ </td>
496
+ <td>81.6
497
+ </td>
498
+ <td>85.9
499
+ </td>
500
+ </tr>
501
+ <tr>
502
+ <td>ARC-Challenge
503
+ </td>
504
+ <td>25
505
+ </td>
506
+ <td>acc_char
507
+ </td>
508
+ <td>79.4
509
+ </td>
510
+ <td>79.7
511
+ </td>
512
+ <td>93.1
513
+ </td>
514
+ <td>92.9
515
+ </td>
516
+ <td>96.1
517
+ </td>
518
+ </tr>
519
+ <tr>
520
+ <td>Knowledge reasoning
521
+ </td>
522
+ <td>TriviaQA-Wiki
523
+ </td>
524
+ <td>5
525
+ </td>
526
+ <td>em
527
+ </td>
528
+ <td>78.5
529
+ </td>
530
+ <td>77.6
531
+ </td>
532
+ <td>89.7
533
+ </td>
534
+ <td>89.8
535
+ </td>
536
+ <td>91.8
537
+ </td>
538
+ </tr>
539
+ <tr>
540
+ <td rowspan="4" >Reading comprehension
541
+ </td>
542
+ <td>SQuAD
543
+ </td>
544
+ <td>1
545
+ </td>
546
+ <td>em
547
+ </td>
548
+ <td>76.4
549
+ </td>
550
+ <td>77.0
551
+ </td>
552
+ <td>85.6
553
+ </td>
554
+ <td>81.8
555
+ </td>
556
+ <td>89.3
557
+ </td>
558
+ </tr>
559
+ <tr>
560
+ <td>QuAC (F1)
561
+ </td>
562
+ <td>1
563
+ </td>
564
+ <td>f1
565
+ </td>
566
+ <td>44.4
567
+ </td>
568
+ <td>44.9
569
+ </td>
570
+ <td>51.1
571
+ </td>
572
+ <td>51.1
573
+ </td>
574
+ <td>53.6
575
+ </td>
576
+ </tr>
577
+ <tr>
578
+ <td>BoolQ
579
+ </td>
580
+ <td>0
581
+ </td>
582
+ <td>acc_char
583
+ </td>
584
+ <td>75.7
585
+ </td>
586
+ <td>75.0
587
+ </td>
588
+ <td>79.0
589
+ </td>
590
+ <td>79.4
591
+ </td>
592
+ <td>80.0
593
+ </td>
594
+ </tr>
595
+ <tr>
596
+ <td>DROP (F1)
597
+ </td>
598
+ <td>3
599
+ </td>
600
+ <td>f1
601
+ </td>
602
+ <td>58.4
603
+ </td>
604
+ <td>59.5
605
+ </td>
606
+ <td>79.7
607
+ </td>
608
+ <td>79.6
609
+ </td>
610
+ <td>84.8
611
+ </td>
612
+ </tr>
613
+ </table>
614
+
615
+
616
+
617
+ ### Instruction tuned models
618
+
619
+
620
+ <table>
621
+ <tr>
622
+ <td><strong>Category</strong>
623
+ </td>
624
+ <td><strong>Benchmark</strong>
625
+ </td>
626
+ <td><strong># Shots</strong>
627
+ </td>
628
+ <td><strong>Metric</strong>
629
+ </td>
630
+ <td><strong>Llama 3 8B Instruct</strong>
631
+ </td>
632
+ <td><strong>Llama 3.1 8B Instruct</strong>
633
+ </td>
634
+ <td><strong>Llama 3 70B Instruct</strong>
635
+ </td>
636
+ <td><strong>Llama 3.1 70B Instruct</strong>
637
+ </td>
638
+ <td><strong>Llama 3.1 405B Instruct</strong>
639
+ </td>
640
+ </tr>
641
+ <tr>
642
+ <td rowspan="4" >General
643
+ </td>
644
+ <td>MMLU
645
+ </td>
646
+ <td>5
647
+ </td>
648
+ <td>macro_avg/acc
649
+ </td>
650
+ <td>68.5
651
+ </td>
652
+ <td>69.4
653
+ </td>
654
+ <td>82.0
655
+ </td>
656
+ <td>83.6
657
+ </td>
658
+ <td>87.3
659
+ </td>
660
+ </tr>
661
+ <tr>
662
+ <td>MMLU (CoT)
663
+ </td>
664
+ <td>0
665
+ </td>
666
+ <td>macro_avg/acc
667
+ </td>
668
+ <td>65.3
669
+ </td>
670
+ <td>73.0
671
+ </td>
672
+ <td>80.9
673
+ </td>
674
+ <td>86.0
675
+ </td>
676
+ <td>88.6
677
+ </td>
678
+ </tr>
679
+ <tr>
680
+ <td>MMLU-Pro (CoT)
681
+ </td>
682
+ <td>5
683
+ </td>
684
+ <td>micro_avg/acc_char
685
+ </td>
686
+ <td>45.5
687
+ </td>
688
+ <td>48.3
689
+ </td>
690
+ <td>63.4
691
+ </td>
692
+ <td>66.4
693
+ </td>
694
+ <td>73.3
695
+ </td>
696
+ </tr>
697
+ <tr>
698
+ <td>IFEval
699
+ </td>
700
+ <td>
701
+ </td>
702
+ <td>
703
+ </td>
704
+ <td>76.8
705
+ </td>
706
+ <td>80.4
707
+ </td>
708
+ <td>82.9
709
+ </td>
710
+ <td>87.5
711
+ </td>
712
+ <td>88.6
713
+ </td>
714
+ </tr>
715
+ <tr>
716
+ <td rowspan="2" >Reasoning
717
+ </td>
718
+ <td>ARC-C
719
+ </td>
720
+ <td>0
721
+ </td>
722
+ <td>acc
723
+ </td>
724
+ <td>82.4
725
+ </td>
726
+ <td>83.4
727
+ </td>
728
+ <td>94.4
729
+ </td>
730
+ <td>94.8
731
+ </td>
732
+ <td>96.9
733
+ </td>
734
+ </tr>
735
+ <tr>
736
+ <td>GPQA
737
+ </td>
738
+ <td>0
739
+ </td>
740
+ <td>em
741
+ </td>
742
+ <td>34.6
743
+ </td>
744
+ <td>30.4
745
+ </td>
746
+ <td>39.5
747
+ </td>
748
+ <td>41.7
749
+ </td>
750
+ <td>50.7
751
+ </td>
752
+ </tr>
753
+ <tr>
754
+ <td rowspan="4" >Code
755
+ </td>
756
+ <td>HumanEval
757
+ </td>
758
+ <td>0
759
+ </td>
760
+ <td>pass@1
761
+ </td>
762
+ <td>60.4
763
+ </td>
764
+ <td>72.6
765
+ </td>
766
+ <td>81.7
767
+ </td>
768
+ <td>80.5
769
+ </td>
770
+ <td>89.0
771
+ </td>
772
+ </tr>
773
+ <tr>
774
+ <td>MBPP ++ base version
775
+ </td>
776
+ <td>0
777
+ </td>
778
+ <td>pass@1
779
+ </td>
780
+ <td>70.6
781
+ </td>
782
+ <td>72.8
783
+ </td>
784
+ <td>82.5
785
+ </td>
786
+ <td>86.0
787
+ </td>
788
+ <td>88.6
789
+ </td>
790
+ </tr>
791
+ <tr>
792
+ <td>Multipl-E HumanEval
793
+ </td>
794
+ <td>0
795
+ </td>
796
+ <td>pass@1
797
+ </td>
798
+ <td>-
799
+ </td>
800
+ <td>50.8
801
+ </td>
802
+ <td>-
803
+ </td>
804
+ <td>65.5
805
+ </td>
806
+ <td>75.2
807
+ </td>
808
+ </tr>
809
+ <tr>
810
+ <td>Multipl-E MBPP
811
+ </td>
812
+ <td>0
813
+ </td>
814
+ <td>pass@1
815
+ </td>
816
+ <td>-
817
+ </td>
818
+ <td>52.4
819
+ </td>
820
+ <td>-
821
+ </td>
822
+ <td>62.0
823
+ </td>
824
+ <td>65.7
825
+ </td>
826
+ </tr>
827
+ <tr>
828
+ <td rowspan="2" >Math
829
+ </td>
830
+ <td>GSM-8K (CoT)
831
+ </td>
832
+ <td>8
833
+ </td>
834
+ <td>em_maj1@1
835
+ </td>
836
+ <td>80.6
837
+ </td>
838
+ <td>84.5
839
+ </td>
840
+ <td>93.0
841
+ </td>
842
+ <td>95.1
843
+ </td>
844
+ <td>96.8
845
+ </td>
846
+ </tr>
847
+ <tr>
848
+ <td>MATH (CoT)
849
+ </td>
850
+ <td>0
851
+ </td>
852
+ <td>final_em
853
+ </td>
854
+ <td>29.1
855
+ </td>
856
+ <td>51.9
857
+ </td>
858
+ <td>51.0
859
+ </td>
860
+ <td>68.0
861
+ </td>
862
+ <td>73.8
863
+ </td>
864
+ </tr>
865
+ <tr>
866
+ <td rowspan="4" >Tool Use
867
+ </td>
868
+ <td>API-Bank
869
+ </td>
870
+ <td>0
871
+ </td>
872
+ <td>acc
873
+ </td>
874
+ <td>48.3
875
+ </td>
876
+ <td>82.6
877
+ </td>
878
+ <td>85.1
879
+ </td>
880
+ <td>90.0
881
+ </td>
882
+ <td>92.0
883
+ </td>
884
+ </tr>
885
+ <tr>
886
+ <td>BFCL
887
+ </td>
888
+ <td>0
889
+ </td>
890
+ <td>acc
891
+ </td>
892
+ <td>60.3
893
+ </td>
894
+ <td>76.1
895
+ </td>
896
+ <td>83.0
897
+ </td>
898
+ <td>84.8
899
+ </td>
900
+ <td>88.5
901
+ </td>
902
+ </tr>
903
+ <tr>
904
+ <td>Gorilla Benchmark API Bench
905
+ </td>
906
+ <td>0
907
+ </td>
908
+ <td>acc
909
+ </td>
910
+ <td>1.7
911
+ </td>
912
+ <td>8.2
913
+ </td>
914
+ <td>14.7
915
+ </td>
916
+ <td>29.7
917
+ </td>
918
+ <td>35.3
919
+ </td>
920
+ </tr>
921
+ <tr>
922
+ <td>Nexus (0-shot)
923
+ </td>
924
+ <td>0
925
+ </td>
926
+ <td>macro_avg/acc
927
+ </td>
928
+ <td>18.1
929
+ </td>
930
+ <td>38.5
931
+ </td>
932
+ <td>47.8
933
+ </td>
934
+ <td>56.7
935
+ </td>
936
+ <td>58.7
937
+ </td>
938
+ </tr>
939
+ <tr>
940
+ <td>Multilingual
941
+ </td>
942
+ <td>Multilingual MGSM (CoT)
943
+ </td>
944
+ <td>0
945
+ </td>
946
+ <td>em
947
+ </td>
948
+ <td>-
949
+ </td>
950
+ <td>68.9
951
+ </td>
952
+ <td>-
953
+ </td>
954
+ <td>86.9
955
+ </td>
956
+ <td>91.6
957
+ </td>
958
+ </tr>
959
+ </table>
960
+
961
+ #### Multilingual benchmarks
962
+
963
+ <table>
964
+ <tr>
965
+ <td><strong>Category</strong>
966
+ </td>
967
+ <td><strong>Benchmark</strong>
968
+ </td>
969
+ <td><strong>Language</strong>
970
+ </td>
971
+ <td><strong>Llama 3.1 8B</strong>
972
+ </td>
973
+ <td><strong>Llama 3.1 70B</strong>
974
+ </td>
975
+ <td><strong>Llama 3.1 405B</strong>
976
+ </td>
977
+ </tr>
978
+ <tr>
979
+ <td rowspan="9" ><strong>General</strong>
980
+ </td>
981
+ <td rowspan="9" ><strong>MMLU (5-shot, macro_avg/acc)</strong>
982
+ </td>
983
+ <td>Portuguese
984
+ </td>
985
+ <td>62.12
986
+ </td>
987
+ <td>80.13
988
+ </td>
989
+ <td>84.95
990
+ </td>
991
+ </tr>
992
+ <tr>
993
+ <td>Spanish
994
+ </td>
995
+ <td>62.45
996
+ </td>
997
+ <td>80.05
998
+ </td>
999
+ <td>85.08
1000
+ </td>
1001
+ </tr>
1002
+ <tr>
1003
+ <td>Italian
1004
+ </td>
1005
+ <td>61.63
1006
+ </td>
1007
+ <td>80.4
1008
+ </td>
1009
+ <td>85.04
1010
+ </td>
1011
+ </tr>
1012
+ <tr>
1013
+ <td>German
1014
+ </td>
1015
+ <td>60.59
1016
+ </td>
1017
+ <td>79.27
1018
+ </td>
1019
+ <td>84.36
1020
+ </td>
1021
+ </tr>
1022
+ <tr>
1023
+ <td>French
1024
+ </td>
1025
+ <td>62.34
1026
+ </td>
1027
+ <td>79.82
1028
+ </td>
1029
+ <td>84.66
1030
+ </td>
1031
+ </tr>
1032
+ <tr>
1033
+ <td>Hindi
1034
+ </td>
1035
+ <td>50.88
1036
+ </td>
1037
+ <td>74.52
1038
+ </td>
1039
+ <td>80.31
1040
+ </td>
1041
+ </tr>
1042
+ <tr>
1043
+ <td>Thai
1044
+ </td>
1045
+ <td>50.32
1046
+ </td>
1047
+ <td>72.95
1048
+ </td>
1049
+ <td>78.21
1050
+ </td>
1051
+ </tr>
1052
+ </table>
1053
+
1054
+
1055
+
1056
+ ## Responsibility & Safety
1057
+
1058
+ As part of our Responsible release approach, we followed a three-pronged strategy to managing trust & safety risks:
1059
+
1060
+
1061
+
1062
+ * Enable developers to deploy helpful, safe and flexible experiences for their target audience and for the use cases supported by Llama.
1063
+ * Protect developers against adversarial users aiming to exploit Llama capabilities to potentially cause harm.
1064
+ * Provide protections for the community to help prevent the misuse of our models.
1065
+
1066
+
1067
+ ### Responsible deployment
1068
+
1069
+ Llama is a foundational technology designed to be used in a variety of use cases, examples on how Meta’s Llama models have been responsibly deployed can be found in our [Community Stories webpage](https://llama.meta.com/community-stories/). Our approach is to build the most helpful models enabling the world to benefit from the technology power, by aligning our model safety for the generic use cases addressing a standard set of harms. Developers are then in the driver seat to tailor safety for their use case, defining their own policy and deploying the models with the necessary safeguards in their Llama systems. Llama 3.1 was developed following the best practices outlined in our Responsible Use Guide, you can refer to the [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to learn more.
1070
+
1071
+
1072
+ #### Llama 3.1 instruct
1073
+
1074
+ Our main objectives for conducting safety fine-tuning are to provide the research community with a valuable resource for studying the robustness of safety fine-tuning, as well as to offer developers a readily available, safe, and powerful model for various applications to reduce the developer workload to deploy safe AI systems. For more details on the safety mitigations implemented please read the Llama 3 paper.
1075
+
1076
+ **Fine-tuning data**
1077
+
1078
+ We employ a multi-faceted approach to data collection, combining human-generated data from our vendors with synthetic data to mitigate potential safety risks. We’ve developed many large language model (LLM)-based classifiers that enable us to thoughtfully select high-quality prompts and responses, enhancing data quality control.
1079
+
1080
+ **Refusals and Tone**
1081
+
1082
+ Building on the work we started with Llama 3, we put a great emphasis on model refusals to benign prompts as well as refusal tone. We included both borderline and adversarial prompts in our safety data strategy, and modified our safety data responses to follow tone guidelines.
1083
+
1084
+
1085
+ #### Llama 3.1 systems
1086
+
1087
+ **Large language models, including Llama 3.1, are not designed to be deployed in isolation but instead should be deployed as part of an overall AI system with additional safety guardrails as required.** Developers are expected to deploy system safeguards when building agentic systems. Safeguards are key to achieve the right helpfulness-safety alignment as well as mitigating safety and security risks inherent to the system and any integration of the model or system with external tools.
1088
+
1089
+ As part of our responsible release approach, we provide the community with [safeguards](https://llama.meta.com/trust-and-safety/) that developers should deploy with Llama models or other LLMs, including Llama Guard 3, Prompt Guard and Code Shield. All our [reference implementations](https://github.com/meta-llama/llama-agentic-system) demos contain these safeguards by default so developers can benefit from system-level safety out-of-the-box.
1090
+
1091
+
1092
+ #### New capabilities
1093
+
1094
+ Note that this release introduces new capabilities, including a longer context window, multilingual inputs and outputs and possible integrations by developers with third party tools. Building with these new capabilities requires specific considerations in addition to the best practices that generally apply across all Generative AI use cases.
1095
+
1096
+ **Tool-use**: Just like in standard software development, developers are responsible for the integration of the LLM with the tools and services of their choice. They should define a clear policy for their use case and assess the integrity of the third party services they use to be aware of the safety and security limitations when using this capability. Refer to the Responsible Use Guide for best practices on the safe deployment of the third party safeguards.
1097
+
1098
+ **Multilinguality**: Llama 3.1 supports 7 languages in addition to English: French, German, Hindi, Italian, Portuguese, Spanish, and Thai. Llama may be able to output text in other languages than those that meet performance thresholds for safety and helpfulness. We strongly discourage developers from using this model to converse in non-supported languages without implementing finetuning and system controls in alignment with their policies and the best practices shared in the Responsible Use Guide.
1099
+
1100
+
1101
+ ### Evaluations
1102
+
1103
+ We evaluated Llama models for common use cases as well as specific capabilities. Common use cases evaluations measure safety risks of systems for most commonly built applications including chat bot, coding assistant, tool calls. We built dedicated, adversarial evaluation datasets and evaluated systems composed of Llama models and Llama Guard 3 to filter input prompt and output response. It is important to evaluate applications in context, and we recommend building dedicated evaluation dataset for your use case. Prompt Guard and Code Shield are also available if relevant to the application.
1104
+
1105
+ Capability evaluations measure vulnerabilities of Llama models inherent to specific capabilities, for which were crafted dedicated benchmarks including long context, multilingual, tools calls, coding or memorization.
1106
+
1107
+ **Red teaming**
1108
+
1109
+ For both scenarios, we conducted recurring red teaming exercises with the goal of discovering risks via adversarial prompting and we used the learnings to improve our benchmarks and safety tuning datasets.
1110
+
1111
+ We partnered early with subject-matter experts in critical risk areas to understand the nature of these real-world harms and how such models may lead to unintended harm for society. Based on these conversations, we derived a set of adversarial goals for the red team to attempt to achieve, such as extracting harmful information or reprogramming the model to act in a potentially harmful capacity. The red team consisted of experts in cybersecurity, adversarial machine learning, responsible AI, and integrity in addition to multilingual content specialists with background in integrity issues in specific geographic markets.
1112
+
1113
+
1114
+ ### Critical and other risks
1115
+
1116
+ We specifically focused our efforts on mitigating the following critical risk areas:
1117
+
1118
+ **1- CBRNE (Chemical, Biological, Radiological, Nuclear, and Explosive materials) helpfulness**
1119
+
1120
+ To assess risks related to proliferation of chemical and biological weapons, we performed uplift testing designed to assess whether use of Llama 3.1 models could meaningfully increase the capabilities of malicious actors to plan or carry out attacks using these types of weapons.
1121
+
1122
+
1123
+ **2. Child Safety**
1124
+
1125
+ Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors including the additional languages Llama 3 is trained on. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.
1126
+
1127
+ **3. Cyber attack enablement**
1128
+
1129
+ Our cyber attack uplift study investigated whether LLMs can enhance human capabilities in hacking tasks, both in terms of skill level and speed.
1130
+
1131
+ Our attack automation study focused on evaluating the capabilities of LLMs when used as autonomous agents in cyber offensive operations, specifically in the context of ransomware attacks. This evaluation was distinct from previous studies that considered LLMs as interactive assistants. The primary objective was to assess whether these models could effectively function as independent agents in executing complex cyber-attacks without human intervention.
1132
+
1133
+ Our study of Llama-3.1-405B’s social engineering uplift for cyber attackers was conducted to assess the effectiveness of AI models in aiding cyber threat actors in spear phishing campaigns. Please read our Llama 3.1 Cyber security whitepaper to learn more.
1134
+
1135
+
1136
+ ### Community
1137
+
1138
+ Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership on AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama).
1139
+
1140
+ We also set up the [Llama Impact Grants](https://llama.meta.com/llama-impact-grants/) program to identify and support the most compelling applications of Meta’s Llama model for societal benefit across three categories: education, climate and open innovation. The 20 finalists from the hundreds of applications can be found [here](https://llama.meta.com/llama-impact-grants/#finalists).
1141
+
1142
+ Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community.
1143
+
1144
+
1145
+ ## Ethical Considerations and Limitations
1146
+
1147
+ The core values of Llama 3.1 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3.1 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.
1148
+
1149
+ But Llama 3.1 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3.1’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3.1 models, developers should perform safety testing and tuning tailored to their specific applications of the model. Please refer to available resources including our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide), [Trust and Safety](https://llama.meta.com/trust-and-safety/) solutions, and other [resources](https://llama.meta.com/docs/get-started/) to learn more about responsible development.
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "meta-llama/Meta-Llama-3.1-8B-Instruct",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 128000,
9
+ "eos_token_id": [
10
+ 128001,
11
+ 128008,
12
+ 128009
13
+ ],
14
+ "hidden_act": "silu",
15
+ "hidden_size": 4096,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 14336,
18
+ "is_decoder": true,
19
+ "max_position_embeddings": 131072,
20
+ "mlp_bias": false,
21
+ "model_type": "llama",
22
+ "num_attention_heads": 32,
23
+ "num_hidden_layers": 32,
24
+ "num_key_value_heads": 8,
25
+ "pretraining_tp": 1,
26
+ "rms_norm_eps": 1e-05,
27
+ "rope_scaling": {
28
+ "factor": 8.0,
29
+ "high_freq_factor": 4.0,
30
+ "low_freq_factor": 1.0,
31
+ "original_max_position_embeddings": 8192,
32
+ "rope_type": "llama3"
33
+ },
34
+ "rope_theta": 500000.0,
35
+ "tie_word_embeddings": false,
36
+ "torch_dtype": "bfloat16",
37
+ "transformers_version": "4.43.4",
38
+ "use_cache": true,
39
+ "vocab_size": 128256
40
+ }
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128008,
7
+ 128009
8
+ ],
9
+ "temperature": 0.6,
10
+ "top_p": 0.9,
11
+ "transformers_version": "4.43.4"
12
+ }
model.yaml ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: llama-3.1
2
+ backend: transformers
3
+ parameters:
4
+ model: fakezeta/Meta-Llama-3.1-8B-Instruct-ov-awq
5
+ context_size: 8192
6
+ type: OVModelForCausalLM
7
+ template:
8
+ chat_message: |
9
+ <|start_header_id|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}<|end_header_id|>
10
+
11
+ {{ if .FunctionCall -}}
12
+ Function call:
13
+ {{ else if eq .RoleName "tool" -}}
14
+ Function response:
15
+ {{ end -}}
16
+ {{ if .Content -}}
17
+ {{.Content -}}
18
+ {{ else if .FunctionCall -}}
19
+ {{ toJson .FunctionCall -}}
20
+ {{ end -}}
21
+ <|eot_id|>
22
+ function: |
23
+ <|start_header_id|>system<|end_header_id|>
24
+ You have access to the following functions:
25
+ {{range .Functions}}
26
+ Use the function '{{.Name}}' to '{{.Description}}'
27
+ {{toJson .Parameters}}
28
+ {{end}}
29
+
30
+ Think very carefully before calling functions.
31
+ If a you choose to call a function ONLY reply in the following format with no prefix or suffix:
32
+
33
+ <function=example_function_name>{{`{{"example_name": "example_value"}}`}}</function>
34
+
35
+ Reminder:
36
+ - If looking for real time information use relevant functions before falling back to searching on internet
37
+ - Function calls MUST follow the specified format, start with <function= and end with </function>
38
+ - Required parameters MUST be specified
39
+ - Only call one function at a time
40
+ - Put the entire function call reply on one line
41
+ <|eot_id|>
42
+ {{.Input }}
43
+ <|start_header_id|>assistant<|end_header_id|>
44
+ chat: |
45
+ {{.Input }}
46
+ <|start_header_id|>assistant<|end_header_id|>
47
+ completion: |
48
+ {{.Input}}
49
+
openvino_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "compression": null,
3
+ "dtype": "int4",
4
+ "input_info": null,
5
+ "optimum_version": "1.21.3",
6
+ "quantization_config": {
7
+ "all_layers": null,
8
+ "bits": 4,
9
+ "dataset": "wikitext2",
10
+ "group_size": 128,
11
+ "ignored_scope": null,
12
+ "num_samples": null,
13
+ "quant_method": "awq",
14
+ "ratio": 1.0,
15
+ "scale_estimation": true,
16
+ "sensitivity_metric": null,
17
+ "sym": false,
18
+ "tokenizer": null
19
+ },
20
+ "save_onnx_model": false,
21
+ "transformers_version": "4.43.4"
22
+ }
openvino_detokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:160619e2644bebe01815c3057288381e589f0c2368c52d4465db78c84e0a9fcb
3
+ size 1586485
openvino_detokenizer.xml ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="detokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="Parameter_386440" type="Parameter" version="opset1">
5
+ <data shape="?,?" element_type="i64" />
6
+ <output>
7
+ <port id="0" precision="I64" names="Parameter_386440">
8
+ <dim>-1</dim>
9
+ <dim>-1</dim>
10
+ </port>
11
+ </output>
12
+ </layer>
13
+ <layer id="1" name="Convert_386456" type="Convert" version="opset1">
14
+ <data destination_type="i32" />
15
+ <input>
16
+ <port id="0" precision="I64">
17
+ <dim>-1</dim>
18
+ <dim>-1</dim>
19
+ </port>
20
+ </input>
21
+ <output>
22
+ <port id="1" precision="I32">
23
+ <dim>-1</dim>
24
+ <dim>-1</dim>
25
+ </port>
26
+ </output>
27
+ </layer>
28
+ <layer id="2" name="Constant_386335" type="Const" version="opset1">
29
+ <data element_type="u8" shape="1586436" offset="0" size="1586436" />
30
+ <output>
31
+ <port id="0" precision="U8">
32
+ <dim>1586436</dim>
33
+ </port>
34
+ </output>
35
+ </layer>
36
+ <layer id="3" name="StringTensorUnpack_386336" type="StringTensorUnpack" version="extension">
37
+ <data mode="begins_ends" />
38
+ <input>
39
+ <port id="0" precision="U8">
40
+ <dim>1586436</dim>
41
+ </port>
42
+ </input>
43
+ <output>
44
+ <port id="1" precision="I32">
45
+ <dim>-1</dim>
46
+ </port>
47
+ <port id="2" precision="I32">
48
+ <dim>-1</dim>
49
+ </port>
50
+ <port id="3" precision="U8">
51
+ <dim>-1</dim>
52
+ </port>
53
+ </output>
54
+ </layer>
55
+ <layer id="4" name="VocabDecoder_386441" type="VocabDecoder" version="extension">
56
+ <data skip_tokens="128000, 128001, 128002, 128003, 128004, 128005, 128006, 128007, 128008, 128009, 128010, 128011, 128012, 128013, 128014, 128015, 128016, 128017, 128018, 128019, 128020, 128021, 128022, 128023, 128024, 128025, 128026, 128027, 128028, 128029, 128030, 128031, 128032, 128033, 128034, 128035, 128036, 128037, 128038, 128039, 128040, 128041, 128042, 128043, 128044, 128045, 128046, 128047, 128048, 128049, 128050, 128051, 128052, 128053, 128054, 128055, 128056, 128057, 128058, 128059, 128060, 128061, 128062, 128063, 128064, 128065, 128066, 128067, 128068, 128069, 128070, 128071, 128072, 128073, 128074, 128075, 128076, 128077, 128078, 128079, 128080, 128081, 128082, 128083, 128084, 128085, 128086, 128087, 128088, 128089, 128090, 128091, 128092, 128093, 128094, 128095, 128096, 128097, 128098, 128099, 128100, 128101, 128102, 128103, 128104, 128105, 128106, 128107, 128108, 128109, 128110, 128111, 128112, 128113, 128114, 128115, 128116, 128117, 128118, 128119, 128120, 128121, 128122, 128123, 128124, 128125, 128126, 128127, 128128, 128129, 128130, 128131, 128132, 128133, 128134, 128135, 128136, 128137, 128138, 128139, 128140, 128141, 128142, 128143, 128144, 128145, 128146, 128147, 128148, 128149, 128150, 128151, 128152, 128153, 128154, 128155, 128156, 128157, 128158, 128159, 128160, 128161, 128162, 128163, 128164, 128165, 128166, 128167, 128168, 128169, 128170, 128171, 128172, 128173, 128174, 128175, 128176, 128177, 128178, 128179, 128180, 128181, 128182, 128183, 128184, 128185, 128186, 128187, 128188, 128189, 128190, 128191, 128192, 128193, 128194, 128195, 128196, 128197, 128198, 128199, 128200, 128201, 128202, 128203, 128204, 128205, 128206, 128207, 128208, 128209, 128210, 128211, 128212, 128213, 128214, 128215, 128216, 128217, 128218, 128219, 128220, 128221, 128222, 128223, 128224, 128225, 128226, 128227, 128228, 128229, 128230, 128231, 128232, 128233, 128234, 128235, 128236, 128237, 128238, 128239, 128240, 128241, 128242, 128243, 128244, 128245, 128246, 128247, 128248, 128249, 128250, 128251, 128252, 128253, 128254, 128255" />
57
+ <input>
58
+ <port id="0" precision="I32">
59
+ <dim>-1</dim>
60
+ <dim>-1</dim>
61
+ </port>
62
+ <port id="1" precision="I32">
63
+ <dim>-1</dim>
64
+ </port>
65
+ <port id="2" precision="I32">
66
+ <dim>-1</dim>
67
+ </port>
68
+ <port id="3" precision="U8">
69
+ <dim>-1</dim>
70
+ </port>
71
+ </input>
72
+ <output>
73
+ <port id="4" precision="I32">
74
+ <dim>-1</dim>
75
+ </port>
76
+ <port id="5" precision="I32">
77
+ <dim>-1</dim>
78
+ </port>
79
+ <port id="6" precision="I32">
80
+ <dim>-1</dim>
81
+ </port>
82
+ <port id="7" precision="I32">
83
+ <dim>-1</dim>
84
+ </port>
85
+ <port id="8" precision="U8">
86
+ <dim>-1</dim>
87
+ </port>
88
+ </output>
89
+ </layer>
90
+ <layer id="5" name="CharsToBytes_386442" type="CharsToBytes" version="extension">
91
+ <input>
92
+ <port id="0" precision="I32">
93
+ <dim>-1</dim>
94
+ </port>
95
+ <port id="1" precision="I32">
96
+ <dim>-1</dim>
97
+ </port>
98
+ <port id="2" precision="I32">
99
+ <dim>-1</dim>
100
+ </port>
101
+ <port id="3" precision="I32">
102
+ <dim>-1</dim>
103
+ </port>
104
+ <port id="4" precision="U8">
105
+ <dim>-1</dim>
106
+ </port>
107
+ </input>
108
+ <output>
109
+ <port id="5" precision="I32">
110
+ <dim>-1</dim>
111
+ </port>
112
+ <port id="6" precision="I32">
113
+ <dim>-1</dim>
114
+ </port>
115
+ <port id="7" precision="U8">
116
+ <dim>-1</dim>
117
+ </port>
118
+ </output>
119
+ </layer>
120
+ <layer id="6" name="Constant_386444" type="Const" version="opset1">
121
+ <data element_type="u8" shape="47" offset="1586436" size="47" />
122
+ <output>
123
+ <port id="0" precision="U8">
124
+ <dim>47</dim>
125
+ </port>
126
+ </output>
127
+ </layer>
128
+ <layer id="7" name="Constant_386446" type="Const" version="opset1">
129
+ <data element_type="u8" shape="2" offset="1586483" size="2" />
130
+ <output>
131
+ <port id="0" precision="U8">
132
+ <dim>2</dim>
133
+ </port>
134
+ </output>
135
+ </layer>
136
+ <layer id="8" name="RegexNormalization_386447" type="RegexNormalization" version="extension">
137
+ <data global_replace="true" />
138
+ <input>
139
+ <port id="0" precision="I32">
140
+ <dim>-1</dim>
141
+ </port>
142
+ <port id="1" precision="I32">
143
+ <dim>-1</dim>
144
+ </port>
145
+ <port id="2" precision="U8">
146
+ <dim>-1</dim>
147
+ </port>
148
+ <port id="3" precision="U8">
149
+ <dim>47</dim>
150
+ </port>
151
+ <port id="4" precision="U8">
152
+ <dim>2</dim>
153
+ </port>
154
+ </input>
155
+ <output>
156
+ <port id="5" precision="I32">
157
+ <dim>-1</dim>
158
+ </port>
159
+ <port id="6" precision="I32">
160
+ <dim>-1</dim>
161
+ </port>
162
+ <port id="7" precision="U8">
163
+ <dim>-1</dim>
164
+ </port>
165
+ </output>
166
+ </layer>
167
+ <layer id="9" name="StringTensorPack_386448" type="StringTensorPack" version="extension">
168
+ <data mode="begins_ends" />
169
+ <input>
170
+ <port id="0" precision="I32">
171
+ <dim>-1</dim>
172
+ </port>
173
+ <port id="1" precision="I32">
174
+ <dim>-1</dim>
175
+ </port>
176
+ <port id="2" precision="U8">
177
+ <dim>-1</dim>
178
+ </port>
179
+ </input>
180
+ <output>
181
+ <port id="3" precision="STRING" names="string_output">
182
+ <dim>-1</dim>
183
+ </port>
184
+ </output>
185
+ </layer>
186
+ <layer id="10" name="Result_386449" type="Result" version="opset1">
187
+ <input>
188
+ <port id="0" precision="STRING">
189
+ <dim>-1</dim>
190
+ </port>
191
+ </input>
192
+ </layer>
193
+ </layers>
194
+ <edges>
195
+ <edge from-layer="0" from-port="0" to-layer="1" to-port="0" />
196
+ <edge from-layer="1" from-port="1" to-layer="4" to-port="0" />
197
+ <edge from-layer="2" from-port="0" to-layer="3" to-port="0" />
198
+ <edge from-layer="3" from-port="1" to-layer="4" to-port="1" />
199
+ <edge from-layer="3" from-port="2" to-layer="4" to-port="2" />
200
+ <edge from-layer="3" from-port="3" to-layer="4" to-port="3" />
201
+ <edge from-layer="4" from-port="8" to-layer="5" to-port="4" />
202
+ <edge from-layer="4" from-port="7" to-layer="5" to-port="3" />
203
+ <edge from-layer="4" from-port="6" to-layer="5" to-port="2" />
204
+ <edge from-layer="4" from-port="5" to-layer="5" to-port="1" />
205
+ <edge from-layer="4" from-port="4" to-layer="5" to-port="0" />
206
+ <edge from-layer="5" from-port="5" to-layer="8" to-port="0" />
207
+ <edge from-layer="5" from-port="6" to-layer="8" to-port="1" />
208
+ <edge from-layer="5" from-port="7" to-layer="8" to-port="2" />
209
+ <edge from-layer="6" from-port="0" to-layer="8" to-port="3" />
210
+ <edge from-layer="7" from-port="0" to-layer="8" to-port="4" />
211
+ <edge from-layer="8" from-port="5" to-layer="9" to-port="0" />
212
+ <edge from-layer="8" from-port="6" to-layer="9" to-port="1" />
213
+ <edge from-layer="8" from-port="7" to-layer="9" to-port="2" />
214
+ <edge from-layer="9" from-port="3" to-layer="10" to-port="0" />
215
+ </edges>
216
+ <rt_info>
217
+ <bos_token_id value="128000" />
218
+ <chat_template value="{{- bos_token }}&#10;{%- if custom_tools is defined %}&#10; {%- set tools = custom_tools %}&#10;{%- endif %}&#10;{%- if not tools_in_user_message is defined %}&#10; {%- set tools_in_user_message = true %}&#10;{%- endif %}&#10;{%- if not date_string is defined %}&#10; {%- set date_string = &quot;26 Jul 2024&quot; %}&#10;{%- endif %}&#10;{%- if not tools is defined %}&#10; {%- set tools = none %}&#10;{%- endif %}&#10;&#10;{#- This block extracts the system message, so we can slot it into the right place. #}&#10;{%- if messages[0]['role'] == 'system' %}&#10; {%- set system_message = messages[0]['content']|trim %}&#10; {%- set messages = messages[1:] %}&#10;{%- else %}&#10; {%- set system_message = &quot;&quot; %}&#10;{%- endif %}&#10;&#10;{#- System message + builtin tools #}&#10;{{- &quot;&lt;|start_header_id|>system&lt;|end_header_id|>\n\n&quot; }}&#10;{%- if builtin_tools is defined or tools is not none %}&#10; {{- &quot;Environment: ipython\n&quot; }}&#10;{%- endif %}&#10;{%- if builtin_tools is defined %}&#10; {{- &quot;Tools: &quot; + builtin_tools | reject('equalto', 'code_interpreter') | join(&quot;, &quot;) + &quot;\n\n&quot;}}&#10;{%- endif %}&#10;{{- &quot;Cutting Knowledge Date: December 2023\n&quot; }}&#10;{{- &quot;Today Date: &quot; + date_string + &quot;\n\n&quot; }}&#10;{%- if tools is not none and not tools_in_user_message %}&#10; {{- &quot;You have access to the following functions. To call a function, please respond with JSON for a function call.&quot; }}&#10; {{- 'Respond in the format {&quot;name&quot;: function name, &quot;parameters&quot;: dictionary of argument name and its value}.' }}&#10; {{- &quot;Do not use variables.\n\n&quot; }}&#10; {%- for t in tools %}&#10; {{- t | tojson(indent=4) }}&#10; {{- &quot;\n\n&quot; }}&#10; {%- endfor %}&#10;{%- endif %}&#10;{{- system_message }}&#10;{{- &quot;&lt;|eot_id|>&quot; }}&#10;&#10;{#- Custom tools are passed in a user message with some extra guidance #}&#10;{%- if tools_in_user_message and not tools is none %}&#10; {#- Extract the first user message so we can plug it in here #}&#10; {%- if messages | length != 0 %}&#10; {%- set first_user_message = messages[0]['content']|trim %}&#10; {%- set messages = messages[1:] %}&#10; {%- else %}&#10; {{- raise_exception(&quot;Cannot put tools in the first user message when there's no first user message!&quot;) }}&#10;{%- endif %}&#10; {{- '&lt;|start_header_id|>user&lt;|end_header_id|>\n\n' -}}&#10; {{- &quot;Given the following functions, please respond with a JSON for a function call &quot; }}&#10; {{- &quot;with its proper arguments that best answers the given prompt.\n\n&quot; }}&#10; {{- 'Respond in the format {&quot;name&quot;: function name, &quot;parameters&quot;: dictionary of argument name and its value}.' }}&#10; {{- &quot;Do not use variables.\n\n&quot; }}&#10; {%- for t in tools %}&#10; {{- t | tojson(indent=4) }}&#10; {{- &quot;\n\n&quot; }}&#10; {%- endfor %}&#10; {{- first_user_message + &quot;&lt;|eot_id|>&quot;}}&#10;{%- endif %}&#10;&#10;{%- for message in messages %}&#10; {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}&#10; {{- '&lt;|start_header_id|>' + message['role'] + '&lt;|end_header_id|>\n\n'+ message['content'] | trim + '&lt;|eot_id|>' }}&#10; {%- elif 'tool_calls' in message %}&#10; {%- if not message.tool_calls|length == 1 %}&#10; {{- raise_exception(&quot;This model only supports single tool-calls at once!&quot;) }}&#10; {%- endif %}&#10; {%- set tool_call = message.tool_calls[0].function %}&#10; {%- if builtin_tools is defined and tool_call.name in builtin_tools %}&#10; {{- '&lt;|start_header_id|>assistant&lt;|end_header_id|>\n\n' -}}&#10; {{- &quot;&lt;|python_tag|>&quot; + tool_call.name + &quot;.call(&quot; }}&#10; {%- for arg_name, arg_val in tool_call.arguments | items %}&#10; {{- arg_name + '=&quot;' + arg_val + '&quot;' }}&#10; {%- if not loop.last %}&#10; {{- &quot;, &quot; }}&#10; {%- endif %}&#10; {%- endfor %}&#10; {{- &quot;)&quot; }}&#10; {%- else %}&#10; {{- '&lt;|start_header_id|>assistant&lt;|end_header_id|>\n\n' -}}&#10; {{- '{&quot;name&quot;: &quot;' + tool_call.name + '&quot;, ' }}&#10; {{- '&quot;parameters&quot;: ' }}&#10; {{- tool_call.arguments | tojson }}&#10; {{- &quot;}&quot; }}&#10; {%- endif %}&#10; {%- if builtin_tools is defined %}&#10; {#- This means we're in ipython mode #}&#10; {{- &quot;&lt;|eom_id|>&quot; }}&#10; {%- else %}&#10; {{- &quot;&lt;|eot_id|>&quot; }}&#10; {%- endif %}&#10; {%- elif message.role == &quot;tool&quot; or message.role == &quot;ipython&quot; %}&#10; {{- &quot;&lt;|start_header_id|>ipython&lt;|end_header_id|>\n\n&quot; }}&#10; {%- if message.content is mapping or message.content is iterable %}&#10; {{- message.content | tojson }}&#10; {%- else %}&#10; {{- message.content }}&#10; {%- endif %}&#10; {{- &quot;&lt;|eot_id|>&quot; }}&#10; {%- endif %}&#10;{%- endfor %}&#10;{%- if add_generation_prompt %}&#10; {{- '&lt;|start_header_id|>assistant&lt;|end_header_id|>\n\n' }}&#10;{%- endif %}&#10;" />
219
+ <eos_token_id value="128009" />
220
+ <original_tokenizer_class value="&lt;class 'transformers.tokenization_utils_fast.PreTrainedTokenizerFast'>" />
221
+ </rt_info>
222
+ </net>
openvino_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:061a746c5fcbc7e5f75bc4c616d878e84c875da9eb7e103f87c3d715714257b5
3
+ size 4678484064
openvino_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
openvino_tokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae89181c7363c9ba0358188f21687285041a246c8043f3e40ca13b73327107c7
3
+ size 5689022
openvino_tokenizer.xml ADDED
@@ -0,0 +1,946 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="tokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="Parameter_386248" type="Parameter" version="opset1">
5
+ <data shape="?" element_type="string" />
6
+ <output>
7
+ <port id="0" precision="STRING" names="Parameter_386248">
8
+ <dim>-1</dim>
9
+ </port>
10
+ </output>
11
+ </layer>
12
+ <layer id="1" name="Constant_386424" type="Const" version="opset1">
13
+ <data element_type="i32" shape="" offset="0" size="4" />
14
+ <output>
15
+ <port id="0" precision="I32" />
16
+ </output>
17
+ </layer>
18
+ <layer id="2" name="Constant_386425" type="Const" version="opset1">
19
+ <data element_type="i32" shape="" offset="4" size="4" />
20
+ <output>
21
+ <port id="0" precision="I32" />
22
+ </output>
23
+ </layer>
24
+ <layer id="3" name="Constant_386426" type="Const" version="opset1">
25
+ <data element_type="i32" shape="1" offset="8" size="4" />
26
+ <output>
27
+ <port id="0" precision="I32">
28
+ <dim>1</dim>
29
+ </port>
30
+ </output>
31
+ </layer>
32
+ <layer id="4" name="Constant_386254" type="Const" version="opset1">
33
+ <data element_type="i64" shape="" offset="12" size="8" />
34
+ <output>
35
+ <port id="0" precision="I64" />
36
+ </output>
37
+ </layer>
38
+ <layer id="5" name="StringTensorUnpack_386249" type="StringTensorUnpack" version="extension">
39
+ <data mode="begins_ends" />
40
+ <input>
41
+ <port id="0" precision="STRING">
42
+ <dim>-1</dim>
43
+ </port>
44
+ </input>
45
+ <output>
46
+ <port id="1" precision="I32">
47
+ <dim>-1</dim>
48
+ </port>
49
+ <port id="2" precision="I32">
50
+ <dim>-1</dim>
51
+ </port>
52
+ <port id="3" precision="U8">
53
+ <dim>-1</dim>
54
+ </port>
55
+ </output>
56
+ </layer>
57
+ <layer id="6" name="ShapeOf_386250" type="ShapeOf" version="opset3">
58
+ <data output_type="i64" />
59
+ <input>
60
+ <port id="0" precision="I32">
61
+ <dim>-1</dim>
62
+ </port>
63
+ </input>
64
+ <output>
65
+ <port id="1" precision="I64">
66
+ <dim>1</dim>
67
+ </port>
68
+ </output>
69
+ </layer>
70
+ <layer id="7" name="Constant_386251" type="Const" version="opset1">
71
+ <data element_type="i64" shape="" offset="12" size="8" />
72
+ <output>
73
+ <port id="0" precision="I64" />
74
+ </output>
75
+ </layer>
76
+ <layer id="8" name="Constant_386252" type="Const" version="opset1">
77
+ <data element_type="i64" shape="" offset="12" size="8" />
78
+ <output>
79
+ <port id="0" precision="I64" />
80
+ </output>
81
+ </layer>
82
+ <layer id="9" name="Gather_386253" type="Gather" version="opset8">
83
+ <data batch_dims="0" />
84
+ <input>
85
+ <port id="0" precision="I64">
86
+ <dim>1</dim>
87
+ </port>
88
+ <port id="1" precision="I64" />
89
+ <port id="2" precision="I64" />
90
+ </input>
91
+ <output>
92
+ <port id="3" precision="I64" />
93
+ </output>
94
+ </layer>
95
+ <layer id="10" name="Constant_386255" type="Const" version="opset1">
96
+ <data element_type="i64" shape="" offset="20" size="8" />
97
+ <output>
98
+ <port id="0" precision="I64" />
99
+ </output>
100
+ </layer>
101
+ <layer id="11" name="Range_386256" type="Range" version="opset4">
102
+ <data output_type="i32" />
103
+ <input>
104
+ <port id="0" precision="I64" />
105
+ <port id="1" precision="I64" />
106
+ <port id="2" precision="I64" />
107
+ </input>
108
+ <output>
109
+ <port id="3" precision="I32">
110
+ <dim>-1</dim>
111
+ </port>
112
+ </output>
113
+ </layer>
114
+ <layer id="12" name="Constant_386258" type="Const" version="opset1">
115
+ <data element_type="i64" shape="" offset="20" size="8" />
116
+ <output>
117
+ <port id="0" precision="I64" />
118
+ </output>
119
+ </layer>
120
+ <layer id="13" name="Constant_386259" type="Const" version="opset1">
121
+ <data element_type="i64" shape="" offset="20" size="8" />
122
+ <output>
123
+ <port id="0" precision="I64" />
124
+ </output>
125
+ </layer>
126
+ <layer id="14" name="Add_386260" type="Add" version="opset1">
127
+ <data auto_broadcast="numpy" />
128
+ <input>
129
+ <port id="0" precision="I64" />
130
+ <port id="1" precision="I64" />
131
+ </input>
132
+ <output>
133
+ <port id="2" precision="I64" />
134
+ </output>
135
+ </layer>
136
+ <layer id="15" name="Constant_386261" type="Const" version="opset1">
137
+ <data element_type="i64" shape="" offset="20" size="8" />
138
+ <output>
139
+ <port id="0" precision="I64" />
140
+ </output>
141
+ </layer>
142
+ <layer id="16" name="Range_386262" type="Range" version="opset4">
143
+ <data output_type="i32" />
144
+ <input>
145
+ <port id="0" precision="I64" />
146
+ <port id="1" precision="I64" />
147
+ <port id="2" precision="I64" />
148
+ </input>
149
+ <output>
150
+ <port id="3" precision="I32">
151
+ <dim>-1</dim>
152
+ </port>
153
+ </output>
154
+ </layer>
155
+ <layer id="17" name="Constant_386325" type="Const" version="opset1">
156
+ <data element_type="u8" shape="8736" offset="28" size="8736" />
157
+ <output>
158
+ <port id="0" precision="U8">
159
+ <dim>8736</dim>
160
+ </port>
161
+ </output>
162
+ </layer>
163
+ <layer id="18" name="RegexSplit_386326" type="RegexSplit" version="extension">
164
+ <data behaviour="isolate" invert="false" max_splits="-1" />
165
+ <input>
166
+ <port id="0" precision="I32">
167
+ <dim>-1</dim>
168
+ </port>
169
+ <port id="1" precision="I32">
170
+ <dim>-1</dim>
171
+ </port>
172
+ <port id="2" precision="I32">
173
+ <dim>-1</dim>
174
+ </port>
175
+ <port id="3" precision="I32">
176
+ <dim>-1</dim>
177
+ </port>
178
+ <port id="4" precision="U8">
179
+ <dim>-1</dim>
180
+ </port>
181
+ <port id="5" precision="U8">
182
+ <dim>8736</dim>
183
+ </port>
184
+ </input>
185
+ <output>
186
+ <port id="6" precision="I32">
187
+ <dim>-1</dim>
188
+ </port>
189
+ <port id="7" precision="I32">
190
+ <dim>-1</dim>
191
+ </port>
192
+ <port id="8" precision="I32">
193
+ <dim>-1</dim>
194
+ </port>
195
+ <port id="9" precision="I32">
196
+ <dim>-1</dim>
197
+ </port>
198
+ <port id="10" precision="U8">
199
+ <dim>-1</dim>
200
+ </port>
201
+ </output>
202
+ </layer>
203
+ <layer id="19" name="Constant_386331" type="Const" version="opset1">
204
+ <data element_type="u8" shape="120" offset="8764" size="120" />
205
+ <output>
206
+ <port id="0" precision="U8">
207
+ <dim>120</dim>
208
+ </port>
209
+ </output>
210
+ </layer>
211
+ <layer id="20" name="Constant_386328" type="Const" version="opset1">
212
+ <data element_type="u8" shape="8489" offset="8884" size="8489" />
213
+ <output>
214
+ <port id="0" precision="U8">
215
+ <dim>8489</dim>
216
+ </port>
217
+ </output>
218
+ </layer>
219
+ <layer id="21" name="StringTensorUnpack_386329" type="StringTensorUnpack" version="extension">
220
+ <data mode="begins_ends" />
221
+ <input>
222
+ <port id="0" precision="U8">
223
+ <dim>8489</dim>
224
+ </port>
225
+ </input>
226
+ <output>
227
+ <port id="1" precision="I32">
228
+ <dim>-1</dim>
229
+ </port>
230
+ <port id="2" precision="I32">
231
+ <dim>-1</dim>
232
+ </port>
233
+ <port id="3" precision="U8">
234
+ <dim>-1</dim>
235
+ </port>
236
+ </output>
237
+ </layer>
238
+ <layer id="22" name="RegexSplit_386332" type="RegexSplit" version="extension">
239
+ <data behaviour="isolate" invert="false" max_splits="-1" />
240
+ <input>
241
+ <port id="0" precision="I32">
242
+ <dim>-1</dim>
243
+ </port>
244
+ <port id="1" precision="I32">
245
+ <dim>-1</dim>
246
+ </port>
247
+ <port id="2" precision="I32">
248
+ <dim>-1</dim>
249
+ </port>
250
+ <port id="3" precision="I32">
251
+ <dim>-1</dim>
252
+ </port>
253
+ <port id="4" precision="U8">
254
+ <dim>-1</dim>
255
+ </port>
256
+ <port id="5" precision="U8">
257
+ <dim>120</dim>
258
+ </port>
259
+ <port id="6" precision="I32">
260
+ <dim>-1</dim>
261
+ </port>
262
+ <port id="7" precision="I32">
263
+ <dim>-1</dim>
264
+ </port>
265
+ <port id="8" precision="U8">
266
+ <dim>-1</dim>
267
+ </port>
268
+ </input>
269
+ <output>
270
+ <port id="9" precision="I32">
271
+ <dim>-1</dim>
272
+ </port>
273
+ <port id="10" precision="I32">
274
+ <dim>-1</dim>
275
+ </port>
276
+ <port id="11" precision="I32">
277
+ <dim>-1</dim>
278
+ </port>
279
+ <port id="12" precision="I32">
280
+ <dim>-1</dim>
281
+ </port>
282
+ <port id="13" precision="U8">
283
+ <dim>-1</dim>
284
+ </port>
285
+ </output>
286
+ </layer>
287
+ <layer id="23" name="BytesToChars_386333" type="BytesToChars" version="extension">
288
+ <input>
289
+ <port id="0" precision="I32">
290
+ <dim>-1</dim>
291
+ </port>
292
+ <port id="1" precision="I32">
293
+ <dim>-1</dim>
294
+ </port>
295
+ <port id="2" precision="I32">
296
+ <dim>-1</dim>
297
+ </port>
298
+ <port id="3" precision="I32">
299
+ <dim>-1</dim>
300
+ </port>
301
+ <port id="4" precision="U8">
302
+ <dim>-1</dim>
303
+ </port>
304
+ </input>
305
+ <output>
306
+ <port id="5" precision="I32">
307
+ <dim>-1</dim>
308
+ </port>
309
+ <port id="6" precision="I32">
310
+ <dim>-1</dim>
311
+ </port>
312
+ <port id="7" precision="I32">
313
+ <dim>-1</dim>
314
+ </port>
315
+ <port id="8" precision="I32">
316
+ <dim>-1</dim>
317
+ </port>
318
+ <port id="9" precision="U8">
319
+ <dim>-1</dim>
320
+ </port>
321
+ </output>
322
+ </layer>
323
+ <layer id="24" name="Constant_386335" type="Const" version="opset1">
324
+ <data element_type="u8" shape="1586436" offset="17373" size="1586436" />
325
+ <output>
326
+ <port id="0" precision="U8">
327
+ <dim>1586436</dim>
328
+ </port>
329
+ </output>
330
+ </layer>
331
+ <layer id="25" name="StringTensorUnpack_386336" type="StringTensorUnpack" version="extension">
332
+ <data mode="begins_ends" />
333
+ <input>
334
+ <port id="0" precision="U8">
335
+ <dim>1586436</dim>
336
+ </port>
337
+ </input>
338
+ <output>
339
+ <port id="1" precision="I32">
340
+ <dim>-1</dim>
341
+ </port>
342
+ <port id="2" precision="I32">
343
+ <dim>-1</dim>
344
+ </port>
345
+ <port id="3" precision="U8">
346
+ <dim>-1</dim>
347
+ </port>
348
+ </output>
349
+ </layer>
350
+ <layer id="26" name="Constant_386416" type="Const" version="opset1">
351
+ <data element_type="u8" shape="4084185" offset="1603809" size="4084185" />
352
+ <output>
353
+ <port id="0" precision="U8">
354
+ <dim>4084185</dim>
355
+ </port>
356
+ </output>
357
+ </layer>
358
+ <layer id="27" name="StringTensorUnpack_386417" type="StringTensorUnpack" version="extension">
359
+ <data mode="begins_ends" />
360
+ <input>
361
+ <port id="0" precision="U8">
362
+ <dim>4084185</dim>
363
+ </port>
364
+ </input>
365
+ <output>
366
+ <port id="1" precision="I32">
367
+ <dim>-1</dim>
368
+ </port>
369
+ <port id="2" precision="I32">
370
+ <dim>-1</dim>
371
+ </port>
372
+ <port id="3" precision="U8">
373
+ <dim>-1</dim>
374
+ </port>
375
+ </output>
376
+ </layer>
377
+ <layer id="28" name="Constant_386344" type="Const" version="opset1">
378
+ <data element_type="i64" shape="" offset="12" size="8" />
379
+ <output>
380
+ <port id="0" precision="I64" />
381
+ </output>
382
+ </layer>
383
+ <layer id="29" name="Constant_386338" type="Const" version="opset1">
384
+ <data element_type="u8" shape="8489" offset="8884" size="8489" />
385
+ <output>
386
+ <port id="0" precision="U8">
387
+ <dim>8489</dim>
388
+ </port>
389
+ </output>
390
+ </layer>
391
+ <layer id="30" name="StringTensorUnpack_386339" type="StringTensorUnpack" version="extension">
392
+ <data mode="begins_ends" />
393
+ <input>
394
+ <port id="0" precision="U8">
395
+ <dim>8489</dim>
396
+ </port>
397
+ </input>
398
+ <output>
399
+ <port id="1" precision="I32">
400
+ <dim>-1</dim>
401
+ </port>
402
+ <port id="2" precision="I32">
403
+ <dim>-1</dim>
404
+ </port>
405
+ <port id="3" precision="U8">
406
+ <dim>-1</dim>
407
+ </port>
408
+ </output>
409
+ </layer>
410
+ <layer id="31" name="ShapeOf_386340" type="ShapeOf" version="opset3">
411
+ <data output_type="i64" />
412
+ <input>
413
+ <port id="0" precision="I32">
414
+ <dim>-1</dim>
415
+ </port>
416
+ </input>
417
+ <output>
418
+ <port id="1" precision="I64">
419
+ <dim>1</dim>
420
+ </port>
421
+ </output>
422
+ </layer>
423
+ <layer id="32" name="Constant_386341" type="Const" version="opset1">
424
+ <data element_type="i64" shape="" offset="12" size="8" />
425
+ <output>
426
+ <port id="0" precision="I64" />
427
+ </output>
428
+ </layer>
429
+ <layer id="33" name="Constant_386342" type="Const" version="opset1">
430
+ <data element_type="i64" shape="" offset="12" size="8" />
431
+ <output>
432
+ <port id="0" precision="I64" />
433
+ </output>
434
+ </layer>
435
+ <layer id="34" name="Gather_386343" type="Gather" version="opset8">
436
+ <data batch_dims="0" />
437
+ <input>
438
+ <port id="0" precision="I64">
439
+ <dim>1</dim>
440
+ </port>
441
+ <port id="1" precision="I64" />
442
+ <port id="2" precision="I64" />
443
+ </input>
444
+ <output>
445
+ <port id="3" precision="I64" />
446
+ </output>
447
+ </layer>
448
+ <layer id="35" name="Constant_386345" type="Const" version="opset1">
449
+ <data element_type="i64" shape="" offset="20" size="8" />
450
+ <output>
451
+ <port id="0" precision="I64" />
452
+ </output>
453
+ </layer>
454
+ <layer id="36" name="Range_386346" type="Range" version="opset4">
455
+ <data output_type="i32" />
456
+ <input>
457
+ <port id="0" precision="I64" />
458
+ <port id="1" precision="I64" />
459
+ <port id="2" precision="I64" />
460
+ </input>
461
+ <output>
462
+ <port id="3" precision="I32">
463
+ <dim>-1</dim>
464
+ </port>
465
+ </output>
466
+ </layer>
467
+ <layer id="37" name="Constant_386348" type="Const" version="opset1">
468
+ <data element_type="i64" shape="" offset="20" size="8" />
469
+ <output>
470
+ <port id="0" precision="I64" />
471
+ </output>
472
+ </layer>
473
+ <layer id="38" name="Constant_386349" type="Const" version="opset1">
474
+ <data element_type="i64" shape="" offset="20" size="8" />
475
+ <output>
476
+ <port id="0" precision="I64" />
477
+ </output>
478
+ </layer>
479
+ <layer id="39" name="Add_386350" type="Add" version="opset1">
480
+ <data auto_broadcast="numpy" />
481
+ <input>
482
+ <port id="0" precision="I64" />
483
+ <port id="1" precision="I64" />
484
+ </input>
485
+ <output>
486
+ <port id="2" precision="I64" />
487
+ </output>
488
+ </layer>
489
+ <layer id="40" name="Constant_386351" type="Const" version="opset1">
490
+ <data element_type="i64" shape="" offset="20" size="8" />
491
+ <output>
492
+ <port id="0" precision="I64" />
493
+ </output>
494
+ </layer>
495
+ <layer id="41" name="Range_386352" type="Range" version="opset4">
496
+ <data output_type="i32" />
497
+ <input>
498
+ <port id="0" precision="I64" />
499
+ <port id="1" precision="I64" />
500
+ <port id="2" precision="I64" />
501
+ </input>
502
+ <output>
503
+ <port id="3" precision="I32">
504
+ <dim>-1</dim>
505
+ </port>
506
+ </output>
507
+ </layer>
508
+ <layer id="42" name="BytesToChars_386414" type="BytesToChars" version="extension">
509
+ <input>
510
+ <port id="0" precision="I32">
511
+ <dim>-1</dim>
512
+ </port>
513
+ <port id="1" precision="I32">
514
+ <dim>-1</dim>
515
+ </port>
516
+ <port id="2" precision="I32">
517
+ <dim>-1</dim>
518
+ </port>
519
+ <port id="3" precision="I32">
520
+ <dim>-1</dim>
521
+ </port>
522
+ <port id="4" precision="U8">
523
+ <dim>-1</dim>
524
+ </port>
525
+ </input>
526
+ <output>
527
+ <port id="5" precision="I32">
528
+ <dim>-1</dim>
529
+ </port>
530
+ <port id="6" precision="I32">
531
+ <dim>-1</dim>
532
+ </port>
533
+ <port id="7" precision="I32">
534
+ <dim>-1</dim>
535
+ </port>
536
+ <port id="8" precision="I32">
537
+ <dim>-1</dim>
538
+ </port>
539
+ <port id="9" precision="U8">
540
+ <dim>-1</dim>
541
+ </port>
542
+ </output>
543
+ </layer>
544
+ <layer id="43" name="Constant_386418" type="Const" version="opset1">
545
+ <data element_type="i32" shape="256" offset="5687994" size="1024" />
546
+ <output>
547
+ <port id="0" precision="I32">
548
+ <dim>256</dim>
549
+ </port>
550
+ </output>
551
+ </layer>
552
+ <layer id="44" name="BPETokenizer_386419" type="BPETokenizer" version="extension">
553
+ <data unk_token="" fuse_unk="false" suffix_indicator="" end_suffix="" byte_fallback="false" />
554
+ <input>
555
+ <port id="0" precision="I32">
556
+ <dim>-1</dim>
557
+ </port>
558
+ <port id="1" precision="I32">
559
+ <dim>-1</dim>
560
+ </port>
561
+ <port id="2" precision="I32">
562
+ <dim>-1</dim>
563
+ </port>
564
+ <port id="3" precision="I32">
565
+ <dim>-1</dim>
566
+ </port>
567
+ <port id="4" precision="U8">
568
+ <dim>-1</dim>
569
+ </port>
570
+ <port id="5" precision="I32">
571
+ <dim>-1</dim>
572
+ </port>
573
+ <port id="6" precision="I32">
574
+ <dim>-1</dim>
575
+ </port>
576
+ <port id="7" precision="U8">
577
+ <dim>-1</dim>
578
+ </port>
579
+ <port id="8" precision="I32">
580
+ <dim>-1</dim>
581
+ </port>
582
+ <port id="9" precision="I32">
583
+ <dim>-1</dim>
584
+ </port>
585
+ <port id="10" precision="U8">
586
+ <dim>-1</dim>
587
+ </port>
588
+ <port id="11" precision="I32">
589
+ <dim>-1</dim>
590
+ </port>
591
+ <port id="12" precision="I32">
592
+ <dim>-1</dim>
593
+ </port>
594
+ <port id="13" precision="U8">
595
+ <dim>-1</dim>
596
+ </port>
597
+ <port id="14" precision="I32">
598
+ <dim>256</dim>
599
+ </port>
600
+ </input>
601
+ <output>
602
+ <port id="15" precision="I32">
603
+ <dim>-1</dim>
604
+ </port>
605
+ <port id="16" precision="I32">
606
+ <dim>-1</dim>
607
+ </port>
608
+ <port id="17" precision="I32">
609
+ <dim>-1</dim>
610
+ </port>
611
+ </output>
612
+ </layer>
613
+ <layer id="45" name="Subtract_386420" type="Subtract" version="opset1">
614
+ <data auto_broadcast="numpy" />
615
+ <input>
616
+ <port id="0" precision="I32">
617
+ <dim>-1</dim>
618
+ </port>
619
+ <port id="1" precision="I32">
620
+ <dim>-1</dim>
621
+ </port>
622
+ </input>
623
+ <output>
624
+ <port id="2" precision="I32">
625
+ <dim>-1</dim>
626
+ </port>
627
+ </output>
628
+ </layer>
629
+ <layer id="46" name="Constant_386421" type="Const" version="opset1">
630
+ <data element_type="i32" shape="" offset="5689018" size="4" />
631
+ <output>
632
+ <port id="0" precision="I32" />
633
+ </output>
634
+ </layer>
635
+ <layer id="47" name="Minimum_386422" type="Minimum" version="opset1">
636
+ <data auto_broadcast="numpy" />
637
+ <input>
638
+ <port id="0" precision="I32">
639
+ <dim>-1</dim>
640
+ </port>
641
+ <port id="1" precision="I32" />
642
+ </input>
643
+ <output>
644
+ <port id="2" precision="I32">
645
+ <dim>-1</dim>
646
+ </port>
647
+ </output>
648
+ </layer>
649
+ <layer id="48" name="Add_386423" type="Add" version="opset1">
650
+ <data auto_broadcast="numpy" />
651
+ <input>
652
+ <port id="0" precision="I32">
653
+ <dim>-1</dim>
654
+ </port>
655
+ <port id="1" precision="I32">
656
+ <dim>-1</dim>
657
+ </port>
658
+ </input>
659
+ <output>
660
+ <port id="2" precision="I32">
661
+ <dim>-1</dim>
662
+ </port>
663
+ </output>
664
+ </layer>
665
+ <layer id="49" name="Constant_386427" type="Const" version="opset1">
666
+ <data element_type="i32" shape="2" offset="12" size="8" />
667
+ <output>
668
+ <port id="0" precision="I32">
669
+ <dim>2</dim>
670
+ </port>
671
+ </output>
672
+ </layer>
673
+ <layer id="50" name="CombineSegments_386428" type="CombineSegments" version="extension">
674
+ <input>
675
+ <port id="0" precision="I32" />
676
+ <port id="1" precision="I32" />
677
+ <port id="2" precision="I32">
678
+ <dim>1</dim>
679
+ </port>
680
+ <port id="3" precision="I32">
681
+ <dim>-1</dim>
682
+ </port>
683
+ <port id="4" precision="I32">
684
+ <dim>-1</dim>
685
+ </port>
686
+ <port id="5" precision="I32">
687
+ <dim>-1</dim>
688
+ </port>
689
+ <port id="6" precision="I32">
690
+ <dim>2</dim>
691
+ </port>
692
+ </input>
693
+ <output>
694
+ <port id="7" precision="I32">
695
+ <dim>-1</dim>
696
+ </port>
697
+ <port id="8" precision="I32">
698
+ <dim>-1</dim>
699
+ </port>
700
+ <port id="9" precision="I32">
701
+ <dim>-1</dim>
702
+ </port>
703
+ <port id="10" precision="I32">
704
+ <dim>-1</dim>
705
+ </port>
706
+ <port id="11" precision="I32">
707
+ <dim>-1</dim>
708
+ </port>
709
+ <port id="12" precision="I32">
710
+ <dim>-1</dim>
711
+ </port>
712
+ </output>
713
+ </layer>
714
+ <layer id="51" name="Subtract_386429" type="Subtract" version="opset1">
715
+ <data auto_broadcast="numpy" />
716
+ <input>
717
+ <port id="0" precision="I32">
718
+ <dim>-1</dim>
719
+ </port>
720
+ <port id="1" precision="I32">
721
+ <dim>-1</dim>
722
+ </port>
723
+ </input>
724
+ <output>
725
+ <port id="2" precision="I32">
726
+ <dim>-1</dim>
727
+ </port>
728
+ </output>
729
+ </layer>
730
+ <layer id="52" name="Constant_386430" type="Const" version="opset1">
731
+ <data element_type="i32" shape="" offset="0" size="4" />
732
+ <output>
733
+ <port id="0" precision="I32" />
734
+ </output>
735
+ </layer>
736
+ <layer id="53" name="ReduceMax_386431" type="ReduceMax" version="opset1">
737
+ <data keep_dims="false" />
738
+ <input>
739
+ <port id="0" precision="I32">
740
+ <dim>-1</dim>
741
+ </port>
742
+ <port id="1" precision="I32" />
743
+ </input>
744
+ <output>
745
+ <port id="2" precision="I32" />
746
+ </output>
747
+ </layer>
748
+ <layer id="54" name="Constant_386432" type="Const" version="opset1">
749
+ <data element_type="i32" shape="" offset="0" size="4" />
750
+ <output>
751
+ <port id="0" precision="I32" />
752
+ </output>
753
+ </layer>
754
+ <layer id="55" name="RaggedToDense_386433" type="RaggedToDense" version="extension">
755
+ <data pad_right="true" />
756
+ <input>
757
+ <port id="0" precision="I32">
758
+ <dim>-1</dim>
759
+ </port>
760
+ <port id="1" precision="I32">
761
+ <dim>-1</dim>
762
+ </port>
763
+ <port id="2" precision="I32">
764
+ <dim>-1</dim>
765
+ </port>
766
+ <port id="3" precision="I32" />
767
+ <port id="4" precision="I32" />
768
+ </input>
769
+ <output>
770
+ <port id="5" precision="I32">
771
+ <dim>-1</dim>
772
+ <dim>-1</dim>
773
+ </port>
774
+ <port id="6" precision="BOOL">
775
+ <dim>-1</dim>
776
+ <dim>-1</dim>
777
+ </port>
778
+ </output>
779
+ </layer>
780
+ <layer id="56" name="Convert_386434" type="Convert" version="opset1">
781
+ <data destination_type="i32" />
782
+ <input>
783
+ <port id="0" precision="BOOL">
784
+ <dim>-1</dim>
785
+ <dim>-1</dim>
786
+ </port>
787
+ </input>
788
+ <output>
789
+ <port id="1" precision="I32">
790
+ <dim>-1</dim>
791
+ <dim>-1</dim>
792
+ </port>
793
+ </output>
794
+ </layer>
795
+ <layer id="57" name="Convert_386434" type="Convert" version="opset1">
796
+ <data destination_type="i64" />
797
+ <input>
798
+ <port id="0" precision="I32">
799
+ <dim>-1</dim>
800
+ <dim>-1</dim>
801
+ </port>
802
+ </input>
803
+ <output>
804
+ <port id="1" precision="I64" names="attention_mask">
805
+ <dim>-1</dim>
806
+ <dim>-1</dim>
807
+ </port>
808
+ </output>
809
+ </layer>
810
+ <layer id="59" name="RaggedToDense_386433.0" type="Convert" version="opset1">
811
+ <data destination_type="i64" />
812
+ <input>
813
+ <port id="0" precision="I32">
814
+ <dim>-1</dim>
815
+ <dim>-1</dim>
816
+ </port>
817
+ </input>
818
+ <output>
819
+ <port id="1" precision="I64" names="input_ids">
820
+ <dim>-1</dim>
821
+ <dim>-1</dim>
822
+ </port>
823
+ </output>
824
+ </layer>
825
+ <layer id="60" name="Result_386437" type="Result" version="opset1">
826
+ <input>
827
+ <port id="0" precision="I64">
828
+ <dim>-1</dim>
829
+ <dim>-1</dim>
830
+ </port>
831
+ </input>
832
+ </layer>
833
+ <layer id="58" name="Result_386439" type="Result" version="opset1">
834
+ <input>
835
+ <port id="0" precision="I64">
836
+ <dim>-1</dim>
837
+ <dim>-1</dim>
838
+ </port>
839
+ </input>
840
+ </layer>
841
+ </layers>
842
+ <edges>
843
+ <edge from-layer="0" from-port="0" to-layer="5" to-port="0" />
844
+ <edge from-layer="1" from-port="0" to-layer="50" to-port="0" />
845
+ <edge from-layer="2" from-port="0" to-layer="50" to-port="1" />
846
+ <edge from-layer="3" from-port="0" to-layer="50" to-port="2" />
847
+ <edge from-layer="4" from-port="0" to-layer="11" to-port="0" />
848
+ <edge from-layer="5" from-port="1" to-layer="6" to-port="0" />
849
+ <edge from-layer="5" from-port="3" to-layer="18" to-port="4" />
850
+ <edge from-layer="5" from-port="2" to-layer="18" to-port="3" />
851
+ <edge from-layer="5" from-port="1" to-layer="18" to-port="2" />
852
+ <edge from-layer="6" from-port="1" to-layer="9" to-port="0" />
853
+ <edge from-layer="7" from-port="0" to-layer="9" to-port="1" />
854
+ <edge from-layer="8" from-port="0" to-layer="9" to-port="2" />
855
+ <edge from-layer="9" from-port="3" to-layer="14" to-port="0" />
856
+ <edge from-layer="9" from-port="3" to-layer="11" to-port="1" />
857
+ <edge from-layer="10" from-port="0" to-layer="11" to-port="2" />
858
+ <edge from-layer="11" from-port="3" to-layer="18" to-port="0" />
859
+ <edge from-layer="12" from-port="0" to-layer="16" to-port="0" />
860
+ <edge from-layer="13" from-port="0" to-layer="14" to-port="1" />
861
+ <edge from-layer="14" from-port="2" to-layer="16" to-port="1" />
862
+ <edge from-layer="15" from-port="0" to-layer="16" to-port="2" />
863
+ <edge from-layer="16" from-port="3" to-layer="18" to-port="1" />
864
+ <edge from-layer="17" from-port="0" to-layer="18" to-port="5" />
865
+ <edge from-layer="18" from-port="6" to-layer="22" to-port="0" />
866
+ <edge from-layer="18" from-port="7" to-layer="22" to-port="1" />
867
+ <edge from-layer="18" from-port="8" to-layer="22" to-port="2" />
868
+ <edge from-layer="18" from-port="9" to-layer="22" to-port="3" />
869
+ <edge from-layer="18" from-port="10" to-layer="22" to-port="4" />
870
+ <edge from-layer="19" from-port="0" to-layer="22" to-port="5" />
871
+ <edge from-layer="20" from-port="0" to-layer="21" to-port="0" />
872
+ <edge from-layer="21" from-port="1" to-layer="22" to-port="6" />
873
+ <edge from-layer="21" from-port="2" to-layer="22" to-port="7" />
874
+ <edge from-layer="21" from-port="3" to-layer="22" to-port="8" />
875
+ <edge from-layer="22" from-port="13" to-layer="23" to-port="4" />
876
+ <edge from-layer="22" from-port="9" to-layer="23" to-port="0" />
877
+ <edge from-layer="22" from-port="12" to-layer="23" to-port="3" />
878
+ <edge from-layer="22" from-port="11" to-layer="23" to-port="2" />
879
+ <edge from-layer="22" from-port="10" to-layer="23" to-port="1" />
880
+ <edge from-layer="23" from-port="7" to-layer="44" to-port="2" />
881
+ <edge from-layer="23" from-port="6" to-layer="44" to-port="1" />
882
+ <edge from-layer="23" from-port="5" to-layer="44" to-port="0" />
883
+ <edge from-layer="23" from-port="8" to-layer="44" to-port="3" />
884
+ <edge from-layer="23" from-port="9" to-layer="44" to-port="4" />
885
+ <edge from-layer="24" from-port="0" to-layer="25" to-port="0" />
886
+ <edge from-layer="25" from-port="3" to-layer="44" to-port="7" />
887
+ <edge from-layer="25" from-port="2" to-layer="44" to-port="6" />
888
+ <edge from-layer="25" from-port="1" to-layer="44" to-port="5" />
889
+ <edge from-layer="26" from-port="0" to-layer="27" to-port="0" />
890
+ <edge from-layer="27" from-port="1" to-layer="44" to-port="8" />
891
+ <edge from-layer="27" from-port="2" to-layer="44" to-port="9" />
892
+ <edge from-layer="27" from-port="3" to-layer="44" to-port="10" />
893
+ <edge from-layer="28" from-port="0" to-layer="36" to-port="0" />
894
+ <edge from-layer="29" from-port="0" to-layer="30" to-port="0" />
895
+ <edge from-layer="30" from-port="1" to-layer="31" to-port="0" />
896
+ <edge from-layer="30" from-port="1" to-layer="42" to-port="2" />
897
+ <edge from-layer="30" from-port="2" to-layer="42" to-port="3" />
898
+ <edge from-layer="30" from-port="3" to-layer="42" to-port="4" />
899
+ <edge from-layer="31" from-port="1" to-layer="34" to-port="0" />
900
+ <edge from-layer="32" from-port="0" to-layer="34" to-port="1" />
901
+ <edge from-layer="33" from-port="0" to-layer="34" to-port="2" />
902
+ <edge from-layer="34" from-port="3" to-layer="39" to-port="0" />
903
+ <edge from-layer="34" from-port="3" to-layer="36" to-port="1" />
904
+ <edge from-layer="35" from-port="0" to-layer="36" to-port="2" />
905
+ <edge from-layer="36" from-port="3" to-layer="42" to-port="0" />
906
+ <edge from-layer="37" from-port="0" to-layer="41" to-port="0" />
907
+ <edge from-layer="38" from-port="0" to-layer="39" to-port="1" />
908
+ <edge from-layer="39" from-port="2" to-layer="41" to-port="1" />
909
+ <edge from-layer="40" from-port="0" to-layer="41" to-port="2" />
910
+ <edge from-layer="41" from-port="3" to-layer="42" to-port="1" />
911
+ <edge from-layer="42" from-port="8" to-layer="44" to-port="12" />
912
+ <edge from-layer="42" from-port="7" to-layer="44" to-port="11" />
913
+ <edge from-layer="42" from-port="9" to-layer="44" to-port="13" />
914
+ <edge from-layer="43" from-port="0" to-layer="44" to-port="14" />
915
+ <edge from-layer="44" from-port="16" to-layer="45" to-port="0" />
916
+ <edge from-layer="44" from-port="15" to-layer="45" to-port="1" />
917
+ <edge from-layer="44" from-port="15" to-layer="48" to-port="0" />
918
+ <edge from-layer="44" from-port="15" to-layer="50" to-port="3" />
919
+ <edge from-layer="44" from-port="17" to-layer="50" to-port="5" />
920
+ <edge from-layer="45" from-port="2" to-layer="47" to-port="0" />
921
+ <edge from-layer="46" from-port="0" to-layer="47" to-port="1" />
922
+ <edge from-layer="47" from-port="2" to-layer="48" to-port="1" />
923
+ <edge from-layer="48" from-port="2" to-layer="50" to-port="4" />
924
+ <edge from-layer="49" from-port="0" to-layer="50" to-port="6" />
925
+ <edge from-layer="50" from-port="8" to-layer="51" to-port="0" />
926
+ <edge from-layer="50" from-port="7" to-layer="51" to-port="1" />
927
+ <edge from-layer="50" from-port="7" to-layer="55" to-port="0" />
928
+ <edge from-layer="50" from-port="8" to-layer="55" to-port="1" />
929
+ <edge from-layer="50" from-port="9" to-layer="55" to-port="2" />
930
+ <edge from-layer="51" from-port="2" to-layer="53" to-port="0" />
931
+ <edge from-layer="52" from-port="0" to-layer="53" to-port="1" />
932
+ <edge from-layer="53" from-port="2" to-layer="55" to-port="3" />
933
+ <edge from-layer="54" from-port="0" to-layer="55" to-port="4" />
934
+ <edge from-layer="55" from-port="6" to-layer="56" to-port="0" />
935
+ <edge from-layer="55" from-port="5" to-layer="59" to-port="0" />
936
+ <edge from-layer="56" from-port="1" to-layer="57" to-port="0" />
937
+ <edge from-layer="57" from-port="1" to-layer="58" to-port="0" />
938
+ <edge from-layer="59" from-port="1" to-layer="60" to-port="0" />
939
+ </edges>
940
+ <rt_info>
941
+ <bos_token_id value="128000" />
942
+ <chat_template value="{{- bos_token }}&#10;{%- if custom_tools is defined %}&#10; {%- set tools = custom_tools %}&#10;{%- endif %}&#10;{%- if not tools_in_user_message is defined %}&#10; {%- set tools_in_user_message = true %}&#10;{%- endif %}&#10;{%- if not date_string is defined %}&#10; {%- set date_string = &quot;26 Jul 2024&quot; %}&#10;{%- endif %}&#10;{%- if not tools is defined %}&#10; {%- set tools = none %}&#10;{%- endif %}&#10;&#10;{#- This block extracts the system message, so we can slot it into the right place. #}&#10;{%- if messages[0]['role'] == 'system' %}&#10; {%- set system_message = messages[0]['content']|trim %}&#10; {%- set messages = messages[1:] %}&#10;{%- else %}&#10; {%- set system_message = &quot;&quot; %}&#10;{%- endif %}&#10;&#10;{#- System message + builtin tools #}&#10;{{- &quot;&lt;|start_header_id|>system&lt;|end_header_id|>\n\n&quot; }}&#10;{%- if builtin_tools is defined or tools is not none %}&#10; {{- &quot;Environment: ipython\n&quot; }}&#10;{%- endif %}&#10;{%- if builtin_tools is defined %}&#10; {{- &quot;Tools: &quot; + builtin_tools | reject('equalto', 'code_interpreter') | join(&quot;, &quot;) + &quot;\n\n&quot;}}&#10;{%- endif %}&#10;{{- &quot;Cutting Knowledge Date: December 2023\n&quot; }}&#10;{{- &quot;Today Date: &quot; + date_string + &quot;\n\n&quot; }}&#10;{%- if tools is not none and not tools_in_user_message %}&#10; {{- &quot;You have access to the following functions. To call a function, please respond with JSON for a function call.&quot; }}&#10; {{- 'Respond in the format {&quot;name&quot;: function name, &quot;parameters&quot;: dictionary of argument name and its value}.' }}&#10; {{- &quot;Do not use variables.\n\n&quot; }}&#10; {%- for t in tools %}&#10; {{- t | tojson(indent=4) }}&#10; {{- &quot;\n\n&quot; }}&#10; {%- endfor %}&#10;{%- endif %}&#10;{{- system_message }}&#10;{{- &quot;&lt;|eot_id|>&quot; }}&#10;&#10;{#- Custom tools are passed in a user message with some extra guidance #}&#10;{%- if tools_in_user_message and not tools is none %}&#10; {#- Extract the first user message so we can plug it in here #}&#10; {%- if messages | length != 0 %}&#10; {%- set first_user_message = messages[0]['content']|trim %}&#10; {%- set messages = messages[1:] %}&#10; {%- else %}&#10; {{- raise_exception(&quot;Cannot put tools in the first user message when there's no first user message!&quot;) }}&#10;{%- endif %}&#10; {{- '&lt;|start_header_id|>user&lt;|end_header_id|>\n\n' -}}&#10; {{- &quot;Given the following functions, please respond with a JSON for a function call &quot; }}&#10; {{- &quot;with its proper arguments that best answers the given prompt.\n\n&quot; }}&#10; {{- 'Respond in the format {&quot;name&quot;: function name, &quot;parameters&quot;: dictionary of argument name and its value}.' }}&#10; {{- &quot;Do not use variables.\n\n&quot; }}&#10; {%- for t in tools %}&#10; {{- t | tojson(indent=4) }}&#10; {{- &quot;\n\n&quot; }}&#10; {%- endfor %}&#10; {{- first_user_message + &quot;&lt;|eot_id|>&quot;}}&#10;{%- endif %}&#10;&#10;{%- for message in messages %}&#10; {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}&#10; {{- '&lt;|start_header_id|>' + message['role'] + '&lt;|end_header_id|>\n\n'+ message['content'] | trim + '&lt;|eot_id|>' }}&#10; {%- elif 'tool_calls' in message %}&#10; {%- if not message.tool_calls|length == 1 %}&#10; {{- raise_exception(&quot;This model only supports single tool-calls at once!&quot;) }}&#10; {%- endif %}&#10; {%- set tool_call = message.tool_calls[0].function %}&#10; {%- if builtin_tools is defined and tool_call.name in builtin_tools %}&#10; {{- '&lt;|start_header_id|>assistant&lt;|end_header_id|>\n\n' -}}&#10; {{- &quot;&lt;|python_tag|>&quot; + tool_call.name + &quot;.call(&quot; }}&#10; {%- for arg_name, arg_val in tool_call.arguments | items %}&#10; {{- arg_name + '=&quot;' + arg_val + '&quot;' }}&#10; {%- if not loop.last %}&#10; {{- &quot;, &quot; }}&#10; {%- endif %}&#10; {%- endfor %}&#10; {{- &quot;)&quot; }}&#10; {%- else %}&#10; {{- '&lt;|start_header_id|>assistant&lt;|end_header_id|>\n\n' -}}&#10; {{- '{&quot;name&quot;: &quot;' + tool_call.name + '&quot;, ' }}&#10; {{- '&quot;parameters&quot;: ' }}&#10; {{- tool_call.arguments | tojson }}&#10; {{- &quot;}&quot; }}&#10; {%- endif %}&#10; {%- if builtin_tools is defined %}&#10; {#- This means we're in ipython mode #}&#10; {{- &quot;&lt;|eom_id|>&quot; }}&#10; {%- else %}&#10; {{- &quot;&lt;|eot_id|>&quot; }}&#10; {%- endif %}&#10; {%- elif message.role == &quot;tool&quot; or message.role == &quot;ipython&quot; %}&#10; {{- &quot;&lt;|start_header_id|>ipython&lt;|end_header_id|>\n\n&quot; }}&#10; {%- if message.content is mapping or message.content is iterable %}&#10; {{- message.content | tojson }}&#10; {%- else %}&#10; {{- message.content }}&#10; {%- endif %}&#10; {{- &quot;&lt;|eot_id|>&quot; }}&#10; {%- endif %}&#10;{%- endfor %}&#10;{%- if add_generation_prompt %}&#10; {{- '&lt;|start_header_id|>assistant&lt;|end_header_id|>\n\n' }}&#10;{%- endif %}&#10;" />
943
+ <eos_token_id value="128009" />
944
+ <original_tokenizer_class value="&lt;class 'transformers.tokenization_utils_fast.PreTrainedTokenizerFast'>" />
945
+ </rt_info>
946
+ </net>
special_tokens_map.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ }
16
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,2062 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "model_input_names": [
2057
+ "input_ids",
2058
+ "attention_mask"
2059
+ ],
2060
+ "model_max_length": 131072,
2061
+ "tokenizer_class": "PreTrainedTokenizerFast"
2062
+ }