File size: 1,935 Bytes
21e3595
 
 
8fe06de
 
21e3595
 
4eb4026
21e3595
 
 
 
 
 
 
 
 
4eb4026
 
 
21e3595
4eb4026
21e3595
 
 
4eb4026
21e3595
 
 
 
 
 
 
4eb4026
21e3595
4eb4026
 
21e3595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eb4026
 
 
 
 
 
 
21e3595
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
tags:
- image-classification
- vision
- generated_from_trainer
datasets:
- mnist
metrics:
- accuracy
model-index:
- name: vit-base-mnist
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: mnist
      type: mnist
      config: mnist
      split: train
      args: mnist
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9948888888888889
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base-mnist

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the mnist dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0236
- Accuracy: 0.9949

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.3717        | 1.0   | 6375  | 0.0522          | 0.9893   |
| 0.3453        | 2.0   | 12750 | 0.0370          | 0.9906   |
| 0.3736        | 3.0   | 19125 | 0.0308          | 0.9916   |
| 0.3224        | 4.0   | 25500 | 0.0269          | 0.9939   |
| 0.2846        | 5.0   | 31875 | 0.0236          | 0.9949   |


### Framework versions

- Transformers 4.22.0.dev0
- Pytorch 1.11.0a0+17540c5
- Datasets 2.4.0
- Tokenizers 0.12.1